Zero order methods

. ORACLE
L 4 4

R »
\

f(xk) e
Black - box

Now we have only zero order information from the oracle. Typical speed of convegence of these
methods is sublinear. A lot of methods are referred both to zero order methods and global
optimization.

Code

e Global optimization illustration - Open in Colab
e Nevergrad library - Open in Colab

Simulated annealing

Problem

We need to optimize the global optimum of a given function on some space using only the values
of the function in some points on the space.

min F(z) = F(z")

zeX

Simulated Annealing is a probabilistic technique for approximating the global optimum of a given
function.

Algorithm

The name and inspiration come from annealing in metallurgy, a technique involving heating and
controlled cooling of a material to increase the size of its crystals and reduce their defects. Both
are attributes of the material that depend on its thermodynamic free energy. Heating and cooling
the material affects both the temperature and the thermodynamic free energy. The simulation of
annealing can be used to find an approximation of a global minimum for a function with many
variables.

Steps of the Algorithm

Step 1 Let kK = 0 - current iteration, T' = T}, - initial temperature.
Step 2 Let x;, € X - some random point from our space

Step 3 Let decrease the temperature by following rule 7,1 = a1} where 0 < a < 1-some
constant that often is closer to 1

Step 4 Let 1.1 = g(z) - the next point which was obtained from previous one by some
random rule. Itis usually assumed that this rule works so that each subsequent approximation
should not differ very much.

Step 5 Calculate AE = E(xk11) — E(xy), where E(z) - the function that determines the
energy of the system at this point. It is supposed that energy has the minimum in desired value

T*.

Step 6 If AE < 0 then the approximation found is better than it was. So accept .1 as new
started point at the next step and go to the step Step 3

Step 7 If AE >= 0, then we accept zj with the probability of P(AE) = exp 2F/Tk, If we
don't accept xy 1, then we let k = k + 1. Go to the step Step 3

The algorithm can stop working according to various criteria, for example, achieving an optimal
state or lowering the temperature below a predetermined level T'yip,.

Convergence

As it mentioned in Simulated annealing: a proof of convergence the algorithm converges almost
surely to a global maximum.

Illustration

A gif from Wikipedia:

Example

In our example we solve the N queens puzzle - the problem of placing N chess queens on an
NxN chessboard so that no two queens threaten each other.

Y

Y

The Problem

Let E(x) - the number of intersections, where x - the array of placement queens at the field (the
number in array means the column, the index of the number means the row).

The problem is to find z* where E(z*) = min,cx E(z) - the global minimum, that is predefined
and equals to 0 (no two queens threaten each other).

In this code zy = [0,1,2,..., N] that means all queens are placed at the board's diagonal . So at
the beginning E = N (NN — 1), because every queen intersects others.

Results

Results of applying this algorithm with @ = 0.95 to the N queens puzzle for NV = 10 averaged by
100 runs are below:

60

50

40 1

Energy
w
o

20 A

10 A

200 400 600 800 1000
Time

o

Results of running the code for N from 4 to 40 and measuring the time it takes to find the
solution averaged by 100 runs are below:

2000 1

c
o
E
S 1500
[
8
w
Q
2
» 1000
“
o
@
Qo
€
=3
Z 5004

0

5 10 15 20 25 30 35 40
Dimension of The Problem
Open in Colab

Genetic algorithm

Problem

Suppose, we have N points in R? Euclidian space (for simplicity we'll consider and plot case with
d = 2). Let's imagine, that these points are nothing else but houses in some 2d village. Salesman
should find the shortest way to go through the all houses only once.

The village

10 A ‘ A Houses
A
0.8 A A
A A A N
L A A A A
A A
A A
A
* R A
A A
s, AR !
0.2 A A
A A A
0.0 A A
0.0 0.2 0.4 0.6 0.8 1.0

That is, very simple formulation, however, implies N P - hard problem with the factorial growth of
possible combinations. The goal is to minimize the following cumulative distance:

N—-1
d = Z HIIIy(i+1) — fIfy(i)HQ — myin,
i=1

where z, is the k-th point from N and y stands for the N- dimensional vector of indicies, which
describes the order of path. Actually, the problem could be formulated as an LP problem, which is
easier to solve.

& Genetic (evolution) algorithm

Our approach is based on the famous global optimization algorithm, known as evolution
algorithm.

Population and individuals

Firstly we need to generate the set of random solutions as an initialization. We will call a set of
solutions {yk}};:l as population, while each solution is called individual (or creature).

Each creature contains integer numbers 1, ..., N, which indicates the order of bypassing all the
houses. The creature, that reflects the shortest path length among the others will be used as an
output of an algorithm at the current iteration (generation).

Crossing procedure

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we
should formulate the mapping, that takes two creature vectors as an input and returns its
offspring, which inherits parents properties, while remaining consistent. We will use ordered
crossover as such procedure.

Parent 1 847 36251920
Parent 2 0+ 23456789

child 04736251809

Mutation

In order to give our algorithm some ability to escape local minima we provide it with mutation
procedure. We simply swap some houses in an individual vector. To be more accurate, we define
mutation rate (say, 0.05). On the one hand, the higher the rate, the less stable the population is,
on the other, the smaller the rate, the more often algorithm gets stuck in the local minima. We
choose mutation rate - n individuals and in each case swap random mutation rate - N digits.

Selection

At the end of the iteration we have increased populatuion (due to crossing results), than we just
calculate total path distance to each individual and select top i of them.

The village

1.0 - Salesman path (16.72)
08
06
04

0.2

0.0
0.0 02 04 06 08 1.0

10

Path length

6x10°

0 250 500 750 1000 1250 1500 1750 2000
generation

In general, for any ¢ > 0, where d is the number of dimensions in the Euclidean space, there is a
polynomial-time algorithm that finds a tour of length at most (1 + %) times the optimal for
geometric instances of TSP in

o (N(log N) (O(C‘/g))dil)
Code

References

e General information about genetic algorithms
o Wiki

Gradient descent

Summary
A classical problem of function minimization is considered.
Tpi1 = xp — MV f(Tr) (GD)

e The bottleneck (for almost all gradient methods) is choosing step-size, which can lead to the dramatic
difference in method's behavior.

e One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz

1

constant Ny = T

e In huge-scale applications the cost of iteration is usually defined by the cost of gradient calculation (at
least O(p)).

e |f function has Lipschitz-continious gradient, then method could be rewritten as follows:

1

Tpi1 = Tp — fo (zr) =

—argmin { () + (V£ (o).~ 20) + 5 |~ ol

Intuition

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction h, ||hl|s = 1:
f(m +nh) = f(z) + n(f'(z), h) + o(n)
We want h to be a decreasing direction:
f(z +nh) < f(z)
f(x) +n{f'(z), h) + o(n) < f(=)
and going to the limitatn — 0:
(f'(=),h) <0
Also from Cauchy-Bunyakovsky-Schwarz inequality:
[(F'@), < f' @)2llrle = (F(@) k) = =[lf'@)ll20hllz = = (@)]2
Thus, the direction of the antigradient

@
" @

gives the direction of the steepest local decreasing of the function f.

The result of this method is

Tp1 =z — nf' (zr)

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.
dx ,
— = —f(x(t
== —f ()

and discretize it on a uniform grid with 7 step:

Th+1 — Tk _ _fl(xk)
n)

where zj, = x(t;) and n = tg.1 — tg - is the grid step.
From here we get the expression for x4
zrr1 =z — nf'(zp),

which is exactly gradient descent.

Necessary local minimum condition

f'(z)=0

—nf'(xz) =0
z—nf'(z) =2

zr — nf' (zr) = Tr

This is, surely, not a proof at all, but some kind of intuitive explanation.

Minimizer of Lipschitz parabola

Some general highlights about Lipschitz properties are needed for explanation. If a function f : R — R is
continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then Vz, y € R":

76) ~ F(@) ~ (V$@)y—)] < 3 ly ol

which geometrically means, that if we'll fix some point g € R"™ and define two parabolas:

$1(2) = f(a0) + (VS(z0), — z0) — o — o],

ba(w) = F(@o) + (Vf(xo), 2 — o) + o [z — o
Then

$1(z) < f(x) < ¢a(z) Va e R™

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its

minimum.

v¢2($) =0
Vf(zo) + L(z* —z9) =0

. 1
¥ = — fo(wo)

1
Thy1 = Tp — fvf(%)

f(x)

Xi Xicr1 X

This way leads to the % stepsize choosing. However, often the L constant is not known.

But if the function is twice continuously differentiable and its gradient has Lipschitz constant L, we can
derive a way to estimate this constant V& € R":

IVZf@)l <L
or

—~LI, X V*f(x) < LI,

Stepsize choosing strategies

Stepsize choosing strategy 7y, significantly affects convergence. General {%include link.html title='Line
search algorithms might help in choosing scalar parameter.

Constant stepsize
For f € C}J’l:
M =1

flen) = flow) 2 (1= 5Ln) 1970

With choosing n = % we have:
1

11V F()|?

fxp) = f(@rin) =

Fixed sequence

1
vk+1

The latter 2 strategies are the simplest in terms of implementation and analytical analysis. It is clear that this
approach does not often work very well in practice (the function geometry is not known in advance).

Mk =

Exact line search aka steepest descent
N = arg ,%%Ii f(zrs1) = arg ,%%Ii flzr —nVf(zr))

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line
search can be difficult if the function calculation takes too long or costs a lot.

Interesting theoretical property of this method is that each following iteration is orthogonal to the previous
one:

N, = arg min f(zy — nV f(zx))
neR+

Optimality conditions:
V (ki) V() =0

Goldstein-Armijo
Convergence analysis

Convex case

Lipischitz continuity of the gradient
Assume that f : R™ — Ris convex and differentiable, and additionally
IVf(z) — Vi)l < Lljz — y|| Vz,y € R"
i.e., V f is Lipschitz continuous with constant L > 0.
Since V f Lipschitz with constant L, which means V2 f < LI, we have Vz, y, z:
(z—y) (V2f(2) = LI)(z —y) <0
(z—y) 'V f(2)(z —y) < Lz -yl

Now we'll consider second order Taylor approximation of f(y) and Taylor's Remainder Theorem (we assum,
that the function f is continuously differentiable), we have Vz,y, 3z € [z, y] :

f9) = (@) + V(@) (s - 2) + 5 (@~) Vf() @~)
< f@)+ V(@) (- =) + 2o)’
For the gradient descent we have & = Tp, Y = Ti1, Trs1 = T — NeV F(zk):
Flein) < Flaw) + V£ (-n () + 2 0V fa)?

< fe - (1- 52)alv sl

Optimal constant stepsize

1
Now, if we'll consider constant stepsize strategy and will maximize (1 — T) n — max, we'll getn = A
n

flenr) < @) = 5 |V £

Convexity
f(ox) < f(@*) + Vi) (@~ 2°)
That's why we have:
flonn) < f&") + Ven) (o1~ 2°) — 52 Vo)
= (") + 5 (o= = law o — TV F@0I)

* L * *
= f@) + 5 (lox = 2"” = loxa —2"[I%)

Thus, summing over all iterations, we have:

2

IN

> (f(@i) = £(z7) < g(H%o —z"||* = [lz, — 2*]1*)
L
2

where R = ||z¢g — «*||. And due to convexity:

k 2
flan) = 1) < 1 D (Fle) —) £ - = 5

Strongly convex case
If the function is strongly convex:

fly) > f(@) + Vi) (y—z) + gny — z|? Va,y € R

lzrer = 2]* < (1 —) ex — 2"

Bounds

Conditions I f(zx) — f(z*)| < Type of convergence lzr —z*| <
Convex 1\ GR)

) i)] o=) — Sublinear
Lipschitz-continuous function(G) k k
C 1\ LR?

-onve?<)) o <—> Sublinear
Lipschitz-continuous gradient (L) k k
p-Strongly convex Linear 1 kg2
Lipschitz-continuous gradient(L) (1- n,u)
u-Strongly convex Locally linear RR 1 2
Lipschitz-continuous hessian(M) R<R R—R L+3u

e R= SV
Materials

e The zen of gradient descent. Moritz Hardt

® Greatvisualization
® (Cheatsheet on the different convergence theorems proofs

Inexact line search

This strategy of inexact line search works well in practice, as well as it has the following geometric
interpretation:

Sufficient decrease
Let's consider the following scalar function while being at a specific point of x;
¢(a) = f(zr — aVf(zk),a >0
consider first order approximation of @(c):
¢(a) = f(xr) — aV f(zr) ' Vf(zr)

A popular inexact line search condition stipulates that a should first of all give sufficient decrease in the
objective function f, as measured by the following inequality:

flzr — aVf(zy)) < flzx) —c1 - aVf(zr) YV f(2)

for some constant ¢; € (0,1). (Note, that ¢; = 1 stands for the first order Taylor approximation of ¢(c)).
This is also called Armijo condition. The problem of this condition is, that it could accept arbitrary small
values a, which may slow down solution of the problem. In practice, ¢ is chosen to be quite small, say

—4
CcC1 =~ 107,

http://blog.mrtz.org/2013/09/07/the-zen-of-gradient-descent.html
http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

Curvature condition
To rule out unacceptably short steps one can introduce a second requirement:
~Vf(zr — aVf(zr) ' V(zr) 2 2V (i) (~Vf(zr))

for some constant ¢y € (cl, 1), where ¢ is a constant from Armijo condition. Note that the left-handside is
simply the derivative V ,¢(a), so the curvature condition ensures that the slope of ¢ () at the target point
is greater than ¢y times the initial slope V ,¢()(0). Typical values of c2 =~ 0.9 for Newton or quasi-
Newton method. The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions.

Goldstein conditions
Let's consider also 2 linear scalar functions ¢1 (), ¢2():
¢1(a) = f(zx) — aal|Vf(zi)]?

and
pa(a) = f(zx) — Bal|V f(z)|?

Note, that Goldstein-Armijo conditions determine the location of the function ¢(a) between ¢ (a) and
@2 (). Typically, we choose o« = pand 8 = 1 — p, while p € (0.5, 1).

$(n).
f(x,)

Ll

1¢))

$2(N)

0 ¢>1(n)\ n* n

References

e Numerical Optimization by J.Nocedal and S.J.Wright.

