Example 3

Let z € R is a random variable with a given probability distribution of P(z = a;) = p;, where
1=1,...,n,anda; <... < a,.ltissaid that the probability vector of outcomes of p € R"
belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p>=0}={p|p1 +... +p, = 1,p; > 0}. Determine if the following sets of p
are convex: 1. a < Ef(z) < B, where Ef(z) stands for expected value of f(z) : R — R, i.e.

Ef(z) = zn:pif(ai) 1.Ex? <al.Vr<a
. . 1:1 . . . . . . .

Convex function
Convex function
The function f(z), which is defined on the convex set S C R", is called convex S, if:

FQzy + (1= N)z2) < Af(z1) + (1= X) f(z2)

forany zy,zy € Sand0 < A < 1.
If above inequality holds as strict inequality 1 # 23 and 0 < A < 1, then function is called strictly
convex S
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Examples

° f(:l))::L’p,p>1, S=Ry

. f@)=lalr, p>1,5=R
o f(z)=e€*, ceR,S=R
o f(z)=—Inz, S=R.,
e f(z)=zlnz, S=R,,

 The sum of the largest k coordinates f(z) = z(y +... +zp), S=R"
o f(X)=Anaz(X), X=XT
o f(X)=—logdetX, S=57,

Epigraph

For the function f(z), defined on S C R", the following set:

epi f ={[z,p] € Sx R: f(z) < p}

is called epigraph of the function f(z)

Ly

A

\ / — f®

| I Epi f(x)

v

Sublevel set
For the function f(z), defined on S C R", the following set:
Lsg={xecS8: f(z) <p}

is called sublevel set or Lebesgue set of the function f(z)
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Criteria of convexity

First order differential criterion of convexity

The differentiable function f(z) defined on the convex set S C R" is convex if and only if
Ve,y € S:

f(y) = f(2) + VT (2)(y - )

Lety = x + Az, then the criterion will become more tractable:

flz + Az) > f(z) + VfT(a:)Am

—— Function

f(x) _ Global linear
A lower bound

Second order differential criterion of convexity

Twice differentiable function f(z) defined on the convex set S C R" is convex if and only if
Va € int(S) # 0

V2 f(z) = 0



In other words, Vy € R":
(y, V*f(z)y) = 0
Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If f(x) -is a convex function defined on the convex set S C R", then for any 3 sublevel set Lz is
convex.

The function f(x) defined on the convex set S C R" is closed if and only if for any 4 sublevel set
Ly is closed.

Reduction to a line

f:S — Ris convex if and only if S'is convex set and the function g(t) = f(z + tv) defined on
{t|z+tv e S}isconvexforany z € S,v € R", which allows to check convexity of the scalar
function in order to establish covexity of the vector function.

Strong convexity

f(z), defined on the convex set S C R", is called u-strongly convex (strogly convex) on S, if:
FOzr + (1= Nza) < Af(z1) + (1= A)f(za) — pA(1 = N |21 — 2|

forany zi,xz2 € Sand 0 < A < 1 for some p > 0.

—— Function
f(x)A ____ Global quadratic
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Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R" pu-strongly convex if and only if Vz,y € S:
@) 2 f@) + Vi @)y - o) + Sy — o]

Let y = z + Az, then the criterion will become more tractable:



fl@+Az) > f(2) + V" (2)Az + | Aa|?

Second order differential criterion of strong convexity

Twice differentiable function f(z) defined on the convex set S C R" is called p-strongly convex if
and only if Vz € int(S) # 0

V2 f(x) = pl

In other words:
(y, V2 f(z)y) > pllyl’

Facts

e f(x)is called (strictly) concave, if the function — f(z) - (strictly) convex.

e Jensen's inequality for the convex functions:

f(Zaiwz’) < Zaif(xi)

i=1
n

fora; > 0; Y a; = 1(probability simplex)
i=1

For the infinite dimension case:

£| [e@de | < [ f@p(e)da
S S

If the integrals existand p(z) > 0, [p(z)dz =1
s

e If the function f(z) and the set S are convex, then any local minimum z* = arg miél f(z) will
TE

be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

¢ Non-negative sum of the convex functions: af(z) + Bg(z), (> 0,8 > 0)
e Composition with affine function f(Axz + b) is convex, if f(z) is convex
¢ Pointwise maximum (supremum): If fi(z), ..., fm(z) are convex, then

f(z) = max{fi(z),..., fm(z)}is convex

o If f(z,y)is convex on z for any y € Y: g(x) = sup f(z,y) is convex
yey

o If f(z)is convex on S, then g(z,t) = tf(z/t) - is convex with z/t € S,¢ > 0
e Letfi: 51 — Rand fy: Sy — R, where range(f1) C Ss. If f1 and fa are convex, and fs is
increasing, then f2 o f1 is convex on Sy

Other forms of convexity

e Log-convex: log f is convex; Log convexity implies convexity.

e Log-concavity: log f concave; not closed under addition!

e Exponentially convex: [f(z; + ;)] = 0, for 1,...,z,

e Operator convex: f(AX + (1 = A)Y) < Af(X) + (1 — AN f(Y)
e Quasiconvex: f(Az + (1 — A)y) < max{f(z), f(y)}
e Pseudoconvex: (Vf(y),z —y) >0 — f(z) > f(y)



e Discrete convexity: f : Z" — Z; "convexity + matroid theory.”

References

e Steven Boyd lectures
e Suvrit Sra lectures
e Martin Jaggi lectures

Example 4

Show, that f(z) = ¢' x + bis convex and concave.

Example 5

Show, that f(z) = =" Az, where A = 0- is convex on R™.

Example 6
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Show, that f(z) is convex, using first and second order criteria, if f(z)

Example 7

Find the set of z € R", where the function f(z) = m
z'x

is convex, strictly convex, strongly

convex?



Optimality conditions. KKT
Background

Extreme value (Weierstrass) theorem

Let S C R" be compact set and f(x) continuous function on S. So that, the point of the global
minimum of the function f(z) on S exists.

GOODINEWSIEUERVONE!

Lagrange multipliers

Consider simple yet practical case of equality constraints:

f(z) — min
zeR"

st. hi(z) =0,i=1,...,p

The basic idea of Lagrange method implies switch from conditional to unconditional optimization
through increasing the dimensionality of the problem:

L(z,v) = i i
(z,v) = f(z) + ; vihi(z) » _min

General formulations and conditions

f(z) — min

We say that the problem has a solution if the budget set is not empty: * € S, in which the
minimum or the infimum of the given function is achieved.

Optimization on the general set S.

Direction d € R" is a feasible direction at x* € § C R™ if small steps along d do not take us
outside of S.

Consider a set S C R™ and a function f : R™ — R. Suppose that * € S'is a point of local
minimum for f over S, and further assume that f is continuously differentiable around z*.

1. Then for every feasible direction d € R™ at z* it holds that V f(z*) Td > 0


af://n1592
af://n1596
af://n1597
af://n1600
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2. If, additionally, S'is convex then

Viz*) (z—z*) >0,Vz € 8S.

f(x) = z,+z, Lo

Unconstrained optimization

General case

Let f(z) : R™ — R be a twice differentiable function.

f(z) — min (UP)
zeR"
If £* - is a local minimum of f(z), then:
Vf(z*)=0 (UP:Nec.)

If f(x) at some point z* satisfies the following conditions:
H(z*) = V2f(z*) = (=)0, (UP:Suff.)
then (if necessary condition is also satisfied) z* is a local minimum(maximum) of f(z).

Note, that if V. f(z*) = 0, V2f(z*) = 0, i.e. the hessian is positive semidefinite, we cannot be
sure if £* is a local minimum (see Peano surface f(z,y) = (222 — y)(y — z2)).

Convex case

It should be mentioned, that in convex case (i.e., f(:v) is convex) necessary condition becomes
sufficient. Moreover, we can generalize this result on the class of non-differentiable convex
functions.

Let f(z) : R — R - convex function, then the point z* is the solution of (UP) if and only if:
0, € 0f(z")

One more important result for convex constrained case sounds as follows. If f(z) : S — R -
convex function defined on the convex set .S, then:

e Any local minima is the global one.
e The set of the local minimizers S* is convex.
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e If f(z) - strictly or strongly (different cases &) convex function, then S* contains only one
single point §* = z*.

Optimization with equality conditions

Intuition

Things are pretty simple and intuitive in unconstrained problem. In this section we will add one
equality constraint, i.e.

f(z) — min
s.t. h(z) =0

We will try to illustrate approach to solve this problem through the simple example with
f(z) = z1 + 3 and h(z) = 22 + 22 — 2

C=0
C=-1

C=-2

\ g2
flx) = z,+x,=C \k .

A
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C=0

C=-1
C=-2
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feasible point
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f(zp+6z) < f(zp)

N

ozt (-Vf(z)) >0

Vf
AN
Tay
Vh(xp
N
%2\“
-Vh(zp




Generally: in order to move from x  along the budget set towards decreasing the function, we

need to guarantee two conditions:
(6, Vh(zp)) =0
(6, —V f(zp)) >0
Let's assume, that in the process of such a movement we have come to the point where
—V f(z) = vVh(z)

(0z, =V f(z)) = (6, vVh(z)) = 0

Then we came to the point of the budget set, moving from which it will not be possible to reduce

our function. This is the local minimum in the constrained problem :)

Vh(zp

'f

4
-Vf(x") = vWh(z") \

So let's define a Lagrange function (just for our convenience):

L(z,v) = f(z) + vh(z)
Then the point * be the local minimum of the problem described above, if and only if:

Necessary conditions
V.L(z*,v*) = 0 that’s written above
V,L(z*,v*) = 0 budget constraint
Sufficient conditions
<y7 V:thL(m*) V*)y> 2 07
Vy#0cR": Vh(z*)'y=0

We should notice that L(z*,v*) = f(z*).

General formulation

f(z) — min

st.hi(z) =0,i=1,...,p

Solution

(ECP)


af://n1666

p

f()+> vihi(z) = f(z) + v h(z)

i=1

L(z,v) =

Let f(z) and h;(x) be twice differentiable at the point * and continuously differentiable in some
neighborhood z*. The local minimum conditions for z € R", v € R™ are written as

ECP: Necessary conditions
V.L(z*,v*) =0

V,L(z*,v*) =0

ECP: Sufficient conditions
(4, Vi L(z",v")y) > 0,
Vy#0€R": Vhi(z*) 'y =0

Depending on the behavior of the Hessian, the critical points can have a different character.

v'Hy /  Definiteness H Nature x* A
——
>0 Positive d. Minimum %
= P
2 ey H //
=0 Positive semi-d. Valley \y
(N
#0 Indefinit Saddiepoint
. ndefinite addlepoint '
<0 Negative semi-d.  Ridge —
-
<0 Negative d. Maximum / | 4 N

Optimization with inequality conditions
Example
f@) =2t +23 g(z)=2i+a;-1
f(z) — min
zeR"

s.t.g(z) <0

L4

~—"

f(x) = 7 +xy°

iso-contours of f(z)

minimum of f(x)

\ 4

(R
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<

feasible region g(x) <0

minimum of f(z)

7N

\ &,

9(r) = z,°+1,°-1

<

How can we recognize that
some feasible point is at
local minimum?

Ly

minimum of f(z)

<

Vilzg) = 0
Vf(zp) > 0

Ly

minimum of f(z)

FEasy in this case!
Just use unconstrained

optimality conditions.

Ly



Thus, if the constraints of the type of inequalities

are inactive in the constrained problem, then

don't worry and write out the solution to the unconstrained problem. However, this is not the

whole story &). Consider the second childish exa

f(z) = (%1 — 1)2 + (22 +

mple

1)? g(z)=zi+a3-1

f(z) — min

s.t. g(x)

Lo

5

zeR”
<0

' f(x) = (3-1)+ (2 1)

minimum of f(z)

T~

iso-contours of f(z)

5

feasible region g(z) <0 —

/

' f(x) = (3-1)7 (2 1)

minimum of f(z)

9(x) = x+xy-1



How can we recognize that :EQ f(x) — (331'1)2+($2+1)2

some feasible point is at
local minimum?

9(r) = x°+1y°-1

Not very easy in this case!
Even gradient will not be
zero at local optimum &

Effectively have an
optimization problem with an
equality constraint g(z”) = 0



/ -Vi(zp

-Vf(x*) = AVh(z") X

<
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Not a constrained
local minimum as

-Vf(xy) points in ]
towards the feasible

- XN
region

R S Q) | W
Vi(sp)

—

So, we have a problem:

f(z) — min
s.t.g(z) <0
Two possible cases:
g(z) < Oisinactive. g(z*) < 0 g(z) < Oisactive. g(z*) = 0

Necessary conditions
g(z*) =0

S =0 VH(e) ~ AVa(a) A > 0
v2f(x*) >0 Sufficient conditions

(y, Vi, L(z*, A*)y) > 0,
Vy#0€R": Vg(z*)'y=0

Combining two possible cases, we can write down the general conditions for the problem:



f(z) — min
zeR"

s.t.g(z) <0

Let's define the Lagrange function:

L(z,A) = f(z) + Ag(z)
Then x* point - local minimum of the problem described above, if and only if:
(1) VoL(z*,\*) =0
(2) A* >0
(3) A"g(z) =
(4) g(= ) 0
(5) (y, Vi L(z™, A")y) > 0
Vy#OGR"=Vg( Ty <0

0

It's noticeable, that L(z*, \*) = f(«*). Conditions A* = 0, (1), (4) are the first scenario
realization, and conditions A* > 0, (1), (3) - the second.

General formulation

o
fo(z) — min

sit. fi(z) <0,i=1,...,m
hz(x):O, ’izl,...,p

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

L(z,\,v) = +Z>\fz Z vihi(z)

Karush-Kuhn-Tucker conditions

Necessary conditions

Let z*, (\*, v*) be a solution to a mathematical programming problem with zero duality gap (the
optimal value for the primal problem p* is equal to the optimal value for the dual problem d*).Let
also the functions f, f;, h; be differentiable.

o V.L(z*\,v*)=0
V,L(z*,\*,v*) =0

Al >0,i=1,...,m

A fi(z*)=0,i=1,...,m
fl(a:*) < 0,7:: 1,...,m

Some regularity conditions

These conditions are needed in order to make KKT solutions necessary conditions. Some of them
even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have
regularity, you can write down necessary second order conditions (y, V2, L(z*, \*,v*)y) > 0
with semi-definite hessian of Lagrangian.
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¢ Slater's condition. If for a convex problem (i.e., assuming minimization, fo, f; are convex
and h; are affine), there exists a point @ such that h(z) = 0 and f;(z) < 0. (Existance of
strictly feasible point), than we have a zero duality gap and KKT conditions become necessary
and sufficient.

¢ Linearity constraint qualification If f; and h; are affine functions, then no other condition
is needed.

e For other examples, see wiki.

Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as
follows. The solution x*, A*, v*, which satisfies the KKT conditions (above) is a constrained local
minimum if for the Lagrangian,
m p
L(z,\,v) = fo(z) + > Nifi(z) + ) vihi()
i=1 i=1
the following conditions holds:

(4, Vi L(z", A" v")y) > 0
Vy#0€R": Vhi(z*) Ty <0,VF(z*) 'y <0
i=1,...,p Vj:fi(z*)=0

References

e |ecture on KKT conditions (very intuitive explanation) in course "Elements of Statistical
Learning" @ KTH.
e One-line proof of KKT

Example 1
Linear Least squares Write down exact solution of the linear least squares problem:

|Az — b||* — min, A € R™"
zER"

Consider three cases:

T.m<n
2m=n
3m>n


https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications)
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http://www.csc.kth.se/utbildning/kth/kurser/DD3364/Lectures/KKT.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11590-008-0096-3.pdf
af://n1751




Portfolio optimization

source

Portfolio allocation vector

In this example we show how to do portfolio optimization using CVXPY. We begin with the
basic definitions. In portfolio optimization we have some amount of money to invest in any of
n different assets. We choose what fraction w; of our money to invest in each asset 1,
i=1,...,n.

We call w € R" the portfolio allocation vector. We of course have the constraint that

17w = 1. The allocation w; < 0 means a short position in asset ¢, or that we borrow shares
to sell now that we must replace later. The allocation w > 0 is a long only portfolio. The
quantity

|wl1 = 17w, +1Tw_

is known as leverage.

Asset returns

We will only model investments held for one period. The initial prices are p; > 0. The end of

period prices are pj > 0. The asset (fractional) returns are r; = (pz+ — p;)/p;- The porfolio

(fractional) returnis R = rTw.



A common model is that r is a random variable with mean Er = p and covariance
E(r — u)(r — u)T = . It follows that R is a random variable with ER = pfw and

var(R) = wl Sw. ER is the (mean) return of the portfolio. var(R) is the risk of the
portfolio. (Risk is also sometimes given as std(R) = y/var(R).)

Portfolio optimization has two competing objectives: high return and low risk.

Classical (Markowitz) portfolio optimization
Classical (Markowitz) portfolio optimization solves the optimization problem

maximize pfw — yw! Tw

subject to 1Tw=1 wew,

where w € R" is the optimization variable, W is a set of allowed portfolios (e.g., W = Ri
for a long only portfolio), and v > 0 is the risk aversion parameter.

The objective ,uT'w — 'waZ'w is the risk-adjusted return. Varying <y gives the optimal risk-
return trade-off. We can get the same risk-return trade-off by fixing return and minimizing
risk.

Example

In the following code we compute and plot the optimal risk-return trade-off for 10 assets,
restricting ourselves to a long only portfolio.

# Generate data for long only portfolio optimization.
import numpy as np

np.random.seed(1)

n = 10

mu = np.abs(np.random.randn(n, 1))

Sigma = np.random.randn(n, n)

Sigma = Sigma.T @ Sigma

# Long only portfolio optimization.
import cvxpy as cp

w = cp.Variable(n)

gamma = cp.Parameter (nonneg=True)

ret = mu.T @ w

risk = cp.quad form(w, Sigma)

prob = cp.Problem(cp.Minimize(gamma*risk - ret),
[cp.sum(w) == 1,
w >= 0])

# Compute trade-off curve.
from tgdm.auto import tgdm
SAMPLES = 100
risk data = np.zeros(SAMPLES)
ret data = np.zeros(SAMPLES)
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
for i in tgdm(range(SAMPLES)):
gamma.value = gamma_vals[i]
prob.solve()



risk data[i] = cp.sqrt(risk).value

ret data[i] = ret.value

100% || 100/100 [00:00<00:00, 478.73it/s]

# Plot long only trade-off curve.
import matplotlib.pyplot as plt
¢matplotlib inline

$config InlineBackend.figure format

markers _on = [29, 40]

fig = plt.figure()

ax = fig.add subplot(111)
plt.plot(risk data, ret data,
for marker in markers on:

plt.plot(risk data[marker], ret data[marker],

'g-")

'bs'")

ax.annotate(r"$\gamma = %.2f$" % gamma vals[marker], xy=(risk data[marker

for i in range(n):

plt.plot(cp.sqgrt(Sigma[i,i]).value, mu[i],

plt.xlabel('Standard deviation')
plt.ylabel('Return')

ro')

plt.show()
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Standard deviation

We plot below the return distributions for the two risk aversion values marked on the trade-
off curve. Notice that the probability of a loss is near O for the low risk value and far above 0

for the high risk value.

# Plot return distributions for two points on the trade-off curve.

import scipy.stats as spstats

plt.figure()

for midx, idx in enumerate(markers on):

gamma.value = gamma vals[idx]
prob.solve()

X = np.linspace(-2, 5,
plt.plot(x,

1000)

plt.xlabel('Return')

spstats.norm.pdf(x, ret.value, risk.value),

label=r"$\gamma



plt.ylabel( 'Density')
plt.legend(loc='upper right')
plt.show()

1.2 A

Return

Portfolio constraints

There are many other possible portfolio constraints besides the long only constraint. With no
constraint (W = R"), the optimization problem has a simple analytical solution. We will look

in detail at a leverage limit, or the constraint that ||w||; < L™

Another interesting constraint is the market neutral constraint mITw = 0, where m; is the
capitalization of asset i. M = m”r is the market return, and m w = cov(M, R). The
market neutral constraint ensures that the portfolio return is uncorrelated with the market

return.

Example

In the following code we compute and plot optimal risk-return trade-off curves for leverage
limits of 1, 2, and 4. Notice that more leverage increases returns and allows greater risk.

# Portfolio optimization with leverage limit.
Lmax = cp.Parameter()
prob = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

# Compute trade-off curve for each leverage limit.
L vals = [1, 2, 4]
SAMPLES = 100
risk data = np.zeros((len(L_vals), SAMPLES))
ret data = np.zeros((len(L_vals), SAMPLES))
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
w_vals = []
for k, L val in enumerate(L vals):

for i in range(SAMPLES):



Lmax.value = L val

gamma.value = gamma vals[i]
prob.solve(solver=cp.CVXOPT)

risk datal[k, i] = cp.sqgrt(risk).value
ret datal[k, i] = ret.value

# Plot trade-off curves for each leverage limit.
for idx, L val in enumerate(L_vals):
plt.plot(risk data[idx,:], ret data[idx,:], label=r"$L"{\max}$ = %d" % L __
for w val in w vals:
w.value = w_val
plt.plot(cp.sqrt(risk).value, ret.value, 'bs')
plt.xlabel('Standard deviation')
plt.ylabel('Return')
plt.legend(loc='lower right')
plt.show()

Return
w

0 1 2 3 4 5 6 7
Standard deviation

We next examine the points on each trade-off curve where wl Tw = 2. We plot the amount
of each asset held in each portfolio as bar graphs. (Negative holdings indicate a short
position.) Notice that some assets are held in a long position for the low leverage portfolio
but in a short position in the higher leverage portfolios.

# Portfolio optimization with a leverage limit and a bound on risk.
prob = cp.Problem(cp.Maximize(ret),

[cp.sum(w) == 1,

cp.norm(w, 1) <= Lmax,

risk <= 2])

# Compute solution for different leverage limits.
for k, L val in enumerate(L_vals):

Lmax.value = L _val

prob.solve()

w_vals.append( w.value )

# Plot bar graph of holdings for different leverage limits.

' [

colors = ['b', 'g', 'r']



indices = np.argsort(mu.flatten())
for idx, L val in enumerate(L_vals):
plt.bar(np.arange(l,n+l) + 0.25*idx - 0.375, w_vals[idx][indices], color
label=r"s$L"{\max}$ = %d" % L _val, width = 0.25)
plt.ylabel(r"sw i$", fontsize=16)
plt.xlabel(r"$i$", fontsize=16)
plt.xlim([1-0.375, 10+.375])
plt.xticks(np.arange(1l,n+1l))
plt.show()
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Variations

There are many more variations of classical portfolio optimization. We might require that
pTw > R™™ and minimize w” Zw or || £/2w||2. We could include the (broker) cost of short
positions as the penalty s7(w)_ for some s > 0. We could include transaction costs (from a
previous portfolio wP™") as the penalty

kL w —wP™v |7 k> 0.

Common values of paren =1, 3/2, 2.

Factor covariance model

A particularly common and useful variation is to model the covariance matrix X as a factor
model

¥ = FSFT + D,

where F' € R"Xk, k < n is the factor loading matrix. k is the number of factors (or sectors)
(typically 10s). Fj; is the loading of asset i to factor j. D is a diagonal matrix; Dy; > 0 is the
idiosyncratic risk. % > 0 is the factor covariance matrix.

FTwe RF gives the portfolio factor exposures. A portfolio is factor j neutral if
(177Hu)j:: 0.



Portfolio optimization with factor covariance model
Using the factor covariance model, we frame the portfolio optimization problem as

maximize pTw — 7 (fTif + w! Dw)
subject to 1Tw=1, f=FTw
weW, feF,

where the variables are the allocations w € R" and factor exposures f € R" and F gives
the factor exposure constraints.

Using the factor covariance model in the optimization problem has a computational
advantage. The solve time is O(nk?) versus O(n?) for the standard problem.

Example

In the following code we generate and solve a portfolio optimization problem with 50 factors
and 3000 assets. We set the leverage limit = 2 and v = 0.1.

We solve the problem both with the covariance given as a single matrix and as a factor
model. Using CVXPY with the OSQP solver running in a single thread, the solve time was
173.30 seconds for the single matrix formulation and 0.85 seconds for the factor model
formulation. We collected the timings on a MacBook Air with an Intel Core i7 processor.

# Generate data for factor model.

n = 3000

m = 50

np.random.seed (1)

mu = np.abs(np.random.randn(n, 1))

Sigma tilde = np.random.randn(m, m)

Sigma tilde = Sigma tilde.T.dot(Sigma_ tilde)

D = np.diag(np.random.uniform(0, 0.9, size=n))
F = np.random.randn(n, m)

# Factor model portfolio optimization.

w = cp.Variable(n)

f = F.T*w

gamma = cp.Parameter (nonneg=True)

Lmax = cp.Parameter()

ret = mu.T*w

risk = cp.quad_form(f, Sigma_tilde) + cp.quad_form(w, D)

prob_factor = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

# Solve the factor model problem.
Lmax.value = 2

gamma.value = 0.1
prob_factor.solve(verbose=True)

CVXPY
v1.2.0




(CVXPY) Mar 24 01:28:51 PM: Your problem has 3000 variables, 2 constraints, an

/Users/bratishka/anaconda3/1lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of ~° has resulted in matrix multiplication.
Using ~ "% for matrix multiplication has been deprecated since CVXPY 1.1.
Use °° for matrix-scalar and vector-scalar multiplication.
Use ~"@° " for matrix-matrix and matrix-vector multiplication.
Use ~“multiply™~ for elementwise multiplication.
This code path has been hit 1 times so far.

%~

*

warnings.warn(msg, UserWarning)
/Users/bratishka/anaconda3/1lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of has resulted in matrix multiplication.
Using "~ * for matrix multiplication has been deprecated since CVXPY 1.1.
Use "~ * " for matrix-scalar and vector-scalar multiplication.
Use ~~@ " for matrix-matrix and matrix-vector multiplication.
Use ~"multiply "~ for elementwise multiplication.
This code path has been hit 2 times so far.

*

warnings.warn(msg, UserWarning)
(CVXPY) Mar 24 01:28:51 PM: It is compliant with the following grammars: DCP,
DQCP
(CVXPY) Mar 24 01:28:51 PM: CVXPY will first compile your problem; then, it wi
11 invoke a numerical solver to obtain a solution.

(CVXPY) Mar 24 01:28:51 PM: Compiling problem (target solver=0SQP).

(CVXPY) Mar 24 01:28:51 PM: Reduction chain: FlipObjective -> CvxAttr2Constr -
> Qp2SymbolicQp -> QpMatrixStuffing -> OSQP

(CVXPY) Mar 24 01:28:51 PM: Applying reduction FlipObjective

(CVXPY) Mar 24 01:28:51 PM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 24 01:28:51 PM: Applying reduction Qp2SymbolicQp

(CVXPY) Mar 24 01:28:51 PM: Applying reduction QpMatrixStuffing

(CVXPY) Mar 24 01:28:51 PM: Applying reduction OSQP

(CVXPY) Mar 24 01:28:51 PM: Finished problem compilation (took 1.366e-01 secon
ds).

(CVXPY) Mar 24 01:28:51 PM: (Subsequent compilations of this problem, using th
e same arguments, should take less time.)

(CVXPY) Mar 24 01:28:51 PM: Invoking solver OSQP to obtain a solution.
OSQP v0.6.2 - Operator Splitting QP Solver
(c) Bartolomeo Stellato, Goran Banjac
University of Oxford - Stanford University 2021
problem: variables n = 6050, constraints m = 6052
nnz(P) + nnz(A) = 172325
settings: linear system solver = gdldl,
eps_abs = 1.0e-05, eps rel = 1.0e-05,
eps prim inf = 1.0e-04, eps dual inf = 1.0e-04,
rho = 1.00e-01 (adaptive),
sigma = 1.00e-06, alpha = 1.60, max iter = 10000
check_termination: on (interval 25),
scaling: on, scaled termination: off
warm start: on, polish: on, time limit: off



iter objective
1 -2.1359e+03
200 -4.1946e+00
400 -4.6288e+00
600 -4.6444e+00
800 -4.6230e+00
1000 -4.6223e+00
1200 -4.6205e+00
1400 -4.6123e+00
1575 -4.6064e+00

status:

solution polish:
number of iterations:
optimal objective:

run time:

pri res

N O 000K NWRFJ

optimal rho estimate:

.63e+00
.59e-03
.02e-04
.20e-04
.09e-04
.59e-05
.56e-05
.44e-05
.97e-05

solved
unsucc
1575

-4.606
l.l4e+
3.87e-

dua res rho

3.73e+02
7.86e-03
6.0le-04
7.87e-04
3.70e-04
1.04e-04
9.35e-06
1.54e-04
4.06e-05

W wwwwwwwr

essful

4
00s
01

.00e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01

time

H = 0N 0 & WwWEHEN

.38e-02s
.82e-01s
.18e-01s
.55e-01s
.91e-01s
.27e-01s
.65e-01s
.00e+00s
.12e+00s

(CVXPY) Mar 24
(CVXPY) Mar 24
(CVXPY) Mar 24

01:28:
01:28:
01:28:

52 PM:
52 PM:
52 PM:

Problem status: optimal
Optimal value: 4.606e+00

Compilation took 1.366e-01 seconds

(CVXPYi Mar 24 01:28:52 PM: Solver iincludini time sEent in interfacei took 1.

4.606413077728827

# Standard portfolio optimization with data from factor model.
risk = cp.quad form(w, F.dot(Sigma tilde).dot(F.T) + D)
prob = cp.Problem(cp.Maximize(ret - gamma*risk),

[cp.sum(w)

cCp.norm(w,

4

1) <= Lmax])

# Uncomment to solve the problem.
# WARNING: this will take many minutes to run.
prob.solve(verbose=True, max iter=30000)

CVXPY
vl.2.0

(CVXPY) Mar 24 01:28:54 PM: Your problem has 3000 variables, 2 constraints,

print('Factor model solve time =

print('Single model solve time = {}'.format(prob.solver stats.solve_time))

Factor model solve time =
Single model solve time = 447.57964334400003

Materials

2.1817036670000003
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{}'.format (prob factor.solver stats.solve ti






