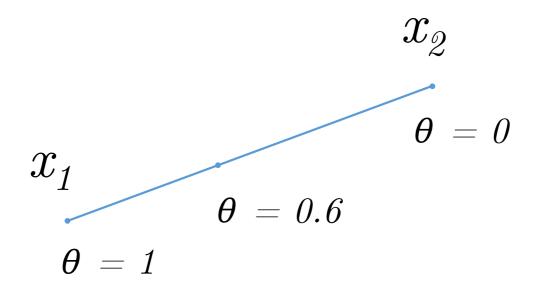
Convex set

Line segment

Suppose x_1,x_2 are two points in \mathbb{R}^n . Then the line segment between them is defined as follows:

$$x= heta x_1+(1- heta)x_2,\; heta\in[0,1]$$



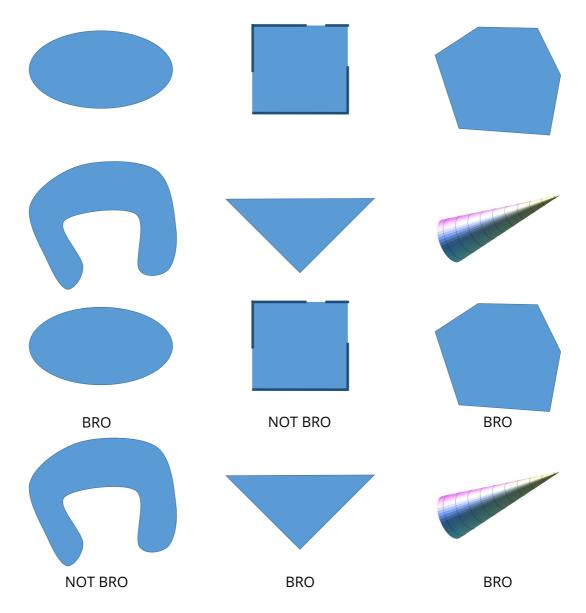
Convex set

The set S is called **convex** if for any x_1, x_2 from S the line segment between them also lies in S, i.e.

$$egin{aligned} orall heta \in [0,1], \ orall x_1, x_2 \in S: \ heta x_1 + (1- heta) x_2 \in S \end{aligned}$$

Examples:

- Any affine set
- Ray
- Line segment



Related definitions

Convex combination

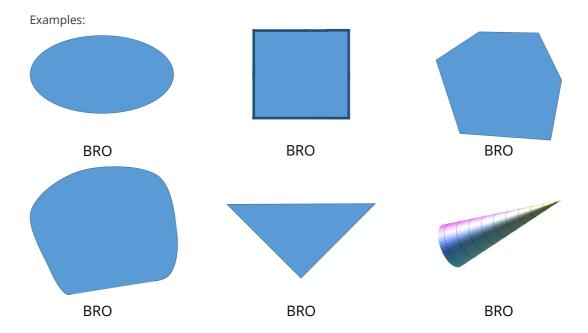
Let $x_1,x_2,\ldots,x_k\in S$, then the point $\theta_1x_1+\theta_2x_2+\ldots+\theta_kx_k$ is called the convex combination of points x_1,x_2,\ldots,x_k if $\sum\limits_{i=1}^k\theta_i=1,\;\theta_i\geq 0$

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$\mathbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \sum_{i=1}^k heta_i = 1, \; heta_i \geq 0
ight\}$$

- The set $\mathbf{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S = \mathbf{conv}(S)$.



Finding convexity

In practice it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.
- Show that *S* is derived from simple convex sets using operations that preserve convexity.

By definition

$$x_1, x_2 \in S, \ 0 \le \theta \le 1 \ \ \to \ \ \theta x_1 + (1 - \theta)x_2 \in S$$

Preserving convexity

The linear combination of convex sets is convex

Let there be 2 convex sets S_x, S_y , let the set $S = \{s \mid s = c_1x + c_2y, \ x \in S_x, \ y \in S_y, \ c_1, c_2 \in \mathbb{R}\}$

Take two points from $S: s_1=c_1x_1+c_2y_1, s_2=c_1x_2+c_2y_2$ and prove that the segment between them f(0,1) also belongs to f(0,1)

$$egin{aligned} heta s_1 + (1- heta) s_2 \ & heta (c_1 x_1 + c_2 y_1) + (1- heta) (c_1 x_2 + c_2 y_2) \ & c_1 (heta x_1 + (1- heta) x_2) + c_2 (heta y_1 + (1- heta) y_2) \ & c_1 x + c_2 y \in S \end{aligned}$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

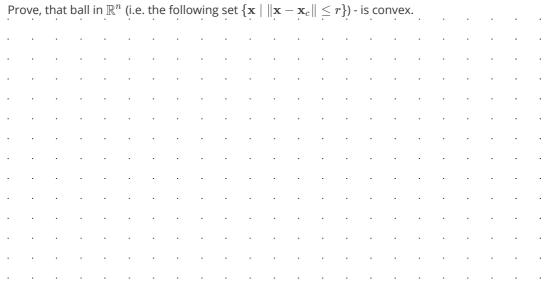
$$S \subseteq \mathbb{R}^n \text{ convex } \rightarrow f(S) = \{f(x) \mid x \in S\} \text{ convex } (f(x) = \mathbf{A}x + \mathbf{b})$$

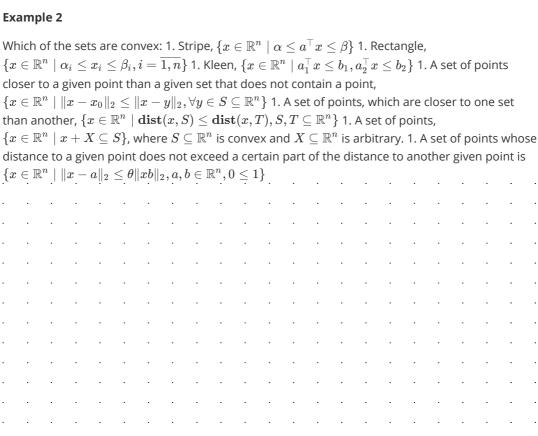
Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\{x \mid x_1A_1+\ldots+x_mA_m \leq B\}$ Here $A_i, B \in \mathbf{S}^p$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$S \subseteq \mathbb{R}^m \text{ convex } \rightarrow f^{-1}(S) = \{x \in \mathbb{R}^n \mid f(x) \in S\} \text{ convex } (f(x) = \mathbf{A}x + \mathbf{b})$$

Example 1





Example 3

Let $x\in\mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}(x=a_i)=p_i$, where $i=1,\ldots,n$, and $a_1<\ldots< a_n$. It is said that the probability vector of outcomes of $p\in\mathbb{R}^n$ belongs to the probabilistic simplex, i.e.

 $P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \geq 0\}$. Determine if the following sets of p are convex: 1. $\alpha < \mathbb{E}f(x) < \beta$, where $\mathbb{E}f(x)$ stands for expected value of $f(x) : \mathbb{R} \to \mathbb{R}$, i.e.

$$\mathbb{E}f(x) = \sum\limits_{i=1}^n p_i f(a_i)$$
 1. $\mathbb{E}x^2 \leq lpha$ 1. $\mathbb{V}x \leq lpha$

Convex function

Convex function

The function f(x), which is defined on the convex set $S\subseteq\mathbb{R}^n$, is called **convex** S, if:

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$.

If above inequality holds as strict inequality $x_1 \neq x_2$ and $0 < \lambda < 1$, then function is called strictly convex S

