l|dea
DIFFERENTIAT iON

ASTABLE

SYMBOLIC AUTOMATIC

sLow /F AST

VUMERICAL | © MANUAL &
(ImPYACTICAL)

UNSTABLE

Automatic differentiation is a scheme, that allows you to compute a value of gradient of
function with a cost of computing function itself only twice.

Chainrule

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule
Suppose, we have the following functions R: R — R, L : R — Rand W & R. Then

OR OR OL
oW OL oW
Multivariate chain rule
The simplest example:
g _Of Oz Of Ox
o /(@10 22(t)) = o=+ 5

Now, we'll consider f : R" — R:

9 _ Of Oz Of Oza
5 (Z1(t),...,z,(t)) = 9z, O +...+ Bz, Ot

But if we will add another dimension f : R™ — R™, than the j-th output of f will be:

8tJJ\W1\V/7'--7Wn\V// éld aml ot Z,L:fvﬂ ot ,

where matrix J € R™*™ is the jacobian of the f. Hence, we could write it in a vector

way:
of _ ;0z A\ _ (o= -
ac ot ((%) _<at) J

Backpropagation

The whole idea came from the applying chain rule to the computation graph of primitive
operations

L =L (y(z2(w,z,b)),t)

FORWARD PAGS (COMPUTE LOSS)

x
W 2WX+H — =6 @ —L =34
b

RACKWARD PASS (compuTe derivATives)

z=wx+b %—m %_w%_o
a ow O0xr ob
0 :
y=0(z) 8—y:0(z)
z
! oL oL
L:— —_— 2 p— —_— —_— J—
5 (Y1) gy ~Y b =ty

All frameworks for automatic differentiation construct (implicitly or explicitly)
computation graph. In deep learning we typically want to compute the derivatives of

gradient descent. For this purpose it is convenient to use the following notation:

0L
v, = —
‘ 8?),-
Letvq,...,vN be atopological ordering of the computation graph (i.e. parents come

before children). vy denotes the variable we're trying to compute derivatives of (e.g.
loss).

Forward pass:
Fori=1,...,N:

Compute v, as a function of its parents.

Backward pass:
vy =1
Fori=N—1,...,1:
Compute derivatives v; = > v
j€Children (v;) v,

fv .
Note, that v; term is coming from the children of v,, while —is already precomputed

8’Ui

effectively.

Forward pass Backward pass
_ z
y=ol2) Rz _ 7\ _ _dz —dR _ -
1 9 dR w=z—+R— =2z + Rw
L=—(y—t) dw dw
2 — =dL ~
1 L=L—=27_/_ = _dz _
R L2 dL b=2—r =2
= Zw db
2 J=TYE Tyt dz
L=L+)R y=Lo-=Ly—1) T=2— =7w
dx

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are
already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly
instead.

Example: element-wise exponent
y = exp (2) J = diag(exp(z)) z=yJ

See the examples of Vector-Jacobian Products from autodidact library:

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products,
which is essential for second order optimization or conjugate gradient methods. For a
scalar-valued function f : R™ — R with continuous second derivatives (so that the
Hessian matrix is symmetric), the Hessian at a point z € R" is written as 82f(x). A
Hessian-vector product function is then able to evaluate

v 0% f(z) - v
for any vector v € R™.

The trick is not to instantiate the full Hessian matrix: if n is large, perhaps in the millions
or billions in the context of neural networks, then that might be impossible to store.
Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an
efficient Hessian-vector product function. We just have to use the identity

0% f(z)v = Oz v 9f(z) - v] = 9g(z),

where g(z) = 0f(x) - v is a new vector-valued function that dots the gradient of f at
x with the vector v. Notice that we're only ever differentiating scalar-valued functions
of vector-valued arguments, which is exactly where we know grad is efficient.

hvp

Code

Materials

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)
JAX autodiff cookbook

