Q Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^{n}, while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$.

Basic linear algebra background

The standard inner product between vectors x and y from \mathbb{R}^{n} is given by

$$
\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}=y^{\top} x=\langle y, x\rangle
$$

Here x_{i} and y_{i} are the scalar i-th components of corresponding vectors.
The standard inner product between matrices X and Y from $\mathbb{R}^{m \times n}$ is given by

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}=\operatorname{tr}\left(Y^{\top} X\right)=\langle Y, X\rangle
$$

The determinant and trace can be expressed in terms of the eigenvalues

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

Don't forget about the cyclic property of a trace for a square matrices A, B, C, D :

$$
\operatorname{tr}(A B C D)=\operatorname{tr}(D A B C)=\operatorname{tr}(C D A B)=\operatorname{tr}(B C D A)
$$

The largest and smallest eigenvalues satisfy

$$
\lambda_{\min }(A)=\inf _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}, \quad \lambda_{\max }(A)=\sup _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}
$$

and consequently $\forall x \in \mathbb{R}^{n}$ (Rayleigh quotient):

$$
\lambda_{\min }(A) x^{\top} x \leq x^{\top} A x \leq \lambda_{\max }(A) x^{\top} x
$$

A matrix $A \in \mathbb{S}^{n}$ (set of square symmetric matrices of dimension n) is called positive (semi)definite if for all $x \neq 0$ (for all $x): x^{\top} A x>(\geq) 0$. We denote this as

The condition number of a nonsingular matrix is defined as

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

Matrix and vector multiplication

Let A be a matrix of size $m \times n$, and B be a matrix of size $n \times p$, and let the product $A B$ be:

$$
C=A B
$$

then C is a $m \times p$ matrix, with element (i, j) given by:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Let A be a matrix of shape $m \times n$, and x be $n \times 1$ vector, then the i-th component of the product:

$$
z=A x
$$

is given by:

$$
z_{i}=\sum_{k=1}^{n} a_{i k} x_{k}
$$

Finally, just to remind:

$$
\begin{aligned}
& C=A B \quad C^{\top}=B^{\top} A^{\top} \\
& A B \neq B A \\
& e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} \\
& e^{A+B} \neq e^{A} e^{B}(\text { but if } A \text { and } B \text { are commuting matrices, which means that } \\
& \left.A B=B A, e^{A+B}=e^{A} e^{B}\right) \\
& \langle x, A y\rangle=\left\langle A^{\top} x, y\right\rangle
\end{aligned}
$$

Gradient

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$, then vector, which contains all first order partial derivatives:

$$
\left.\nabla f(x)=\frac{d f}{d x}=\begin{array}{c}
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

named gradient of $f(x)$. This vector indicates the direction of steepest ascent. Thus, vector $-\nabla f(x)$ means the direction of the steepest descent of the function in the point. Moreover, the gradient vector is always orthogonal to the contour line in the point.

Hessian

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$, then matrix, containing all the second order partial derivatives:

$$
\left.f^{\prime \prime}(x)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right)
$$

In fact, Hessian could be a tensor in such a way: $\left(f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$ is just 3d tensor, every slice is just hessian of corresponding scalar function
$\left(H\left(f_{1}(x)\right), H\left(f_{2}(x)\right), \ldots, H\left(f_{m}(x)\right)\right)$.

Jacobian

The extension of the gradient of multidimensional $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the following matrix:

$$
f^{\prime}(x)=\frac{d f}{d x^{T}}=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \ldots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \ldots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

Summary

\mathbf{X}	\mathbf{Y}	\mathbf{G}	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	$f^{\prime}(x)$ (derivative)
\mathbb{R}^{n}	\mathbb{R}	\mathbb{R}^{n}	$\frac{\partial f}{\partial x_{i}}$ (gradient)
\mathbb{R}^{n}	\mathbb{R}^{m}	$\mathbb{R}^{m \times n}$	$\frac{\partial f_{i}}{\partial x_{j}}$ (jacobian)
$\mathbb{R}^{m \times n}$	\mathbb{R}	$\mathbb{R}^{m \times n}$	$\frac{\partial f}{\partial x_{i j}}$

General concept

Naive approach

The basic idea of naive approach is to reduce matrix/vector derivatives to the wellknown scalar derivatives.

Matrix notation of a function

$$
f(x)=c^{\top} x
$$

Scalar notation of a function

$$
f(x)=\sum_{i=1}^{n} c_{\text {Simple derivative }}^{c_{i} x_{i}}
$$

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial\left(\sum_{i=1}^{n} c_{i} x_{i}\right)}{\partial x_{k}}
$$

One of the most important practical tricks here is to separate indices of sum (i) and

Differential approach

The guru approach implies formulating a set of simple rules, which allows you to calculate derivatives just like in a scalar case. It might be convenient to use the differential notation here.

Differentials

After obtaining the differential notation of $d f$ we can retrieve the gradient using following formula:

$$
d f(x)=\langle\nabla f(x), d x\rangle
$$

Then, if we have differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" $d x$ as the constant $d x_{1}$, then calculate $d(d f)=d^{2} f(x)$

$$
d^{2} f(x)=\left\langle\nabla^{2} f(x) d x_{1}, d x_{2}\right\rangle=\left\langle H_{f}(x) d x_{1}, d x_{2}\right\rangle
$$

Properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).

$$
\begin{aligned}
& d A=0 \\
& d(\alpha X)=\alpha(d X) \\
& d(A X B)=A(d X) B \\
& d(X+Y)=d X+d Y \\
& d\left(X^{\top}\right)=(d X)^{\top} \\
& d(X Y)=(d X) Y+X(d Y) \\
& d\langle X, Y\rangle=\langle d X, Y\rangle+\langle X, d Y\rangle \\
& d\left(\frac{X}{\phi}\right)=\frac{\phi d X-(d \phi) X}{\phi^{2}} \\
& d(\operatorname{det} X)=\operatorname{det} X\left\langle X^{-\top}, d X\right\rangle \\
& d(\operatorname{tr} X)=\langle I, d X\rangle \\
& d f(g(x))=\frac{d f}{d g} \cdot d g(x) \\
& H=(J(\nabla f))^{T}
\end{aligned}
$$

References

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A. Mathematical background.

Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.
Matrix decompositions Cheat Sheet.
Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
Determinant derivative

