¢ Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of
length n is denoted by R™, while the space of real-valued m x n matrices is denoted
by Rmxn.

Basic linear algebra background

The standard inner product between vectors x and y from R"™ is given by
n
T T
(@, y) =2'y=> zyi=y'z=(yz)
i=1
Here x; and y, are the scalar :-th components of corresponding vectors.

The standard inner product between matrices X and Y from R™*" s given by
m n
(X,Y)=tr(XY) =Y ) X,V =tr(Y' X) = (¥, X)

=1 j=1
The determinant and trace can be expressed in terms of the eigenvalues

n n

detA=]]N, trd=) X
i=1 1=1

Don't forget about the cyclic property of a trace for a square matrices A, B, C, D:

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

The largest and smallest eigenvalues satisfy

x' Az x ! Az
Amin(A) = inf T 3 T
z#0 L X z£0 LT T

and consequently Vx € R"™ (Rayleigh quotient):
Amin(A)z Tz < 2" Az < Apax(A)z "z

A matrix A € S™ (set of square symmetric matrices of dimension n) is called positive
(semi)definite if for all z # O(for all z) : x " Az > (>)0. We denote this as



The condition number of a nonsingular matrix is defined as

r(A) = | AJlIIA™Y|

Matrix and vector multiplication

Let A be a matrix of size m x n, and B be a matrix of size n x p, and let the product
AB be:

C=AB

then C'is am X p matrix, with element (4, j) given by:

n
Cij = E a;br;
k=1

Let A be a matrix of shape m X n, and x be n x 1 vector, then the z-th component of
the product:

z = Ax

is given by:

3

Zi = QT

Finally, just to remind:
C=AB C'"=BTAT
AB # BA
A 1k
e =% A
k=0
eAt+B =+ ede? (butif A and B are commuting matrices, which means that

AB = BA, eAtB = e4¢P)
(z, Ay) = (A z,y)

Gradient

Let f(x) : R® — R, then vector, which contains all first order partial derivatives:
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named gradient of f(z). This vector indicates the direction of steepest ascent. Thus,
vector —V f(x) means the direction of the steepest descent of the function in the
point. Moreover, the gradient vector is always orthogonal to the contour line in the
point.

Hessian

Let f(z) : R™ — R, then matrix, containing all the second order partial derivatives:

%f o%f o2 f \
O0x10z1 0x10x2 ce 0x10zy,
% f % f df
f”(w) _ azf _ Or20x1 0r20x2 T Or20xn
% f % f i )
Oxndx1 Oxndx2 e O0xnOxn

In fact, Hessian could be a tensor in such a way: (f(z) : R® — R™) is just 3d tensor,
every slice is just hessian of corresponding scalar function

(H (fi(z)), H (f2(z)), .-, H (fm(z)))-

Jacobian

The extension of the gradient of multidimensional f(x) : R™® — R™ is the following
matrix:

ofr  Ofr %\
0z Oxo e Ozxy,
of2  Ofr Ofy
f’(w) df B dz1 Oz Oz
 dzT
K% Ofm Ofm
Ox1 Oxo T Ozn

Summary
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R R f'(z) (derivative)
R R" of (gradient)
81137;
R™ R™Mx™ Of; (jacobian)
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R R oz,

General concept

Naive approach

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-

known scalar derivatives.

Matrix notation of a function

Tch Vi(z)=c

f(z)

Matrix notation of a gradient

Scalar notation of a function I

f(z)
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One of the most important practical tricks here is to separate indices of sum (z) and



Differential approach

The guru approach implies formulating a set of simple rules, which allows you to
calculate derivatives just like in a scalar case. It might be convenient to use the
differential notation here.

Differentials

After obtaining the differential notation of d f we can retrieve the gradient using
following formula:

df(z) = (Vf(), da)

Then, if we have differential of the above form and we need to calculate the second
derivative of the matrix/vector function, we treat "old” dx as the constant dx, then

calculate d(df) = d? f(z)

d’f(z) = (V2f(z)dz,dzs) = (Hs(x)dzy, dz,y)

Properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix
functions).

dA =0

d(aX) = a(dX)

d(AXB) = A(dX)B
(X+Y)=dX +dY

dX")=(@dX)"
(
{

SH

d(XY) = (dX)Y + X(dY)
d(X,Y) = (dX,Y) + (X, dY)
(X ) $dX — (dg)X

2
d(det X) = det X(X T ,dX)
d(tr X) = (I,dX)

f(o(@) = 5L - d(o)

H=(J(Vf)"

SH
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