o If f(z) - strictly or strongly (different cases @) convex function, then S* contains only one
single point §* = z*.

Optimization with equality conditions

Intuition
Things are pretty simple and intuitive in unconstrained problem. In this section we will add one
equality constraint, i.e. Yeno ,:g;mq
flz) — ;relﬁgnn o MTUMUBAULRY
s.t. h(z) =0

We will try to illustrate approach to solve this problem through the simple example with

f(z) = 21 + z9and h(z) = 22 + z2 — 2)
L F6) = xetXa —2 it ,
Xy xz& R

X\l"" X:—“ 2 =1
w3xe =(GY
*+t Y= R’

C=0

C=-1

C=-2

7

/.

flx) = z,+x,=C \

C=0
C=-1

=2

%
/:\)\
NS
I
\
’ S
o+
o8 <
38
LR
Q

Yy
7

feasible point

7

AN
>£C1
AN
—of cxorpus
K 4 cropoiy
ueruCuop
Q} gd edbunsd
A >x1
N "

/

f(rp+03) < flxR)
(o)
¢8X)—v(-’>/"

Z Sx) v >40
NEOTUSO KANPAR—
nEwt)

S

couAneh

oxT(-Vf(x)) >0

|

Ly

Vf
AN
Tyt " () =o\
Vh(xg v\n(x) TOPUUT
1 (\r\(x\fo/
W& Ly
j}&u
-Vh(zp
SUAE

Generally: in order to move from x along the budget set towards decreasing the function, we
need to guarantee two conditions:

HE BooguM n»
(82, Vh(zp)) =0 | ™ ©vOgkETHO -S4

%NKBMHU.'.
Let's assume, that in the process of such a movement we have ¢ oint where
Vi@ o] M)
= z) =V a
ve® 4 coBuUE
(62, ~V f(x)) = (6z,vVh(z)) = 0] &— oCTAHOBKY

Then we came to the point of the budget set, moving from which it will not be possible to reduce
our function. This is the local minimum in the constrained problem :)

&)

A

Vh(zp

-Vf(z") = vWh(z")

M\éﬁ%

xé.
So let's define a Lagrange function (just for our convenience): "R =0 H!OXX-
cuud L_ _ %CO\-‘&
R o L) = f(@) + vh(z) VL =9
Nowr pOL* wl-=o

Then the point 2* be the local minimum of the problem desded abov iTnd gnly if:
Necessary conditions

V.L(z*,v*) = 0 that’s written above V,L = V{l (“)1’ bVl\b&\ =0
V,L(z*,v*) = 0 budget constraint _ V’(', h{) _ Dvh(’

Sufficient conditions
(y, V2, L(z*,v*)y) >0,
Vy#0cR": Vh(z*) 'y=0

We should notice that L(z*,v*) = f(z*). L(X)b\ _ {;(ﬂ + ﬁ\)" \\,6()

General formulation b=t

{
f(z) — min = % (\ﬁ\ “— \) h (ﬁ>
=3 (BCP)
st.hi(z)=0,i=1,...,p Dé@
Solution "

\nr/_a)

nP\L.PQP : A g o]
: . e T rorusu
A A= \> xeR” PRWATE
pe® oI
/ l \\uu%
man M =" 2P’ s
Y- MARLL, r— m>n
U e T X= A b %(L wix donus,
HEQOONPLIANEHUBL 2
QLT MM { pouand Tii&f “
Py =3 - 7
Secwouy _
MOz b
pRLAUS_ Aedupas
S LpuIL W €O WELSMQAEL NAOKAR ; pr
o el g
ey N LR
T 0 T xe
\A0\>MoaL : =K NAb
'é_ XX —= vawm A ({;Ax,)o) = +(dex>+ Lexgho> =
XQR = ()‘)Ax>
\ AX: b
'F (X\ = KK ALWL IR RQAKLULO (}_G'LP““XG'.
h (ﬂmém‘\x -b L (X,
@ Vi L— =0 '
vy L =0 dL= 5 - Laxdne QM
= V*L = X.\. Nb\zo

AR

L(X)O) = ;‘;)i‘x t QT(AX-\>> 1))(—?2
—> X
L teeai(h-H)
O\L =0+ (AZ-\D, dx >
Al = ¢ Ax-o,dd> => v, | = fy-b =0

{“ M=o | x=-#Y x = - BV
M-b=o [p(H)-b=o 3 A-ﬁ:—b\

p

L(z,v) = f(z) + Z vihi(z) = f(x) + v h(z)

i=1

Let f(z) and h;(x) be twice differentiable at the point £* and continuously differentiable in some
neighborhood z*. The local minimum conditions for z € R™, v € R™ are written as

ECP: Necessary conditions
V.L(z*,v*) =0

V,L(z*,v*) =0

ECP: Sufficient conditions
(y, Vi, L(z",v")y) > 0,
Vy#0cR™: Vhi(z*) 'y =0

Depending on the behavior of the Hessian, the critical points can have a different character.

v'Hy /4 Definiteness H Nature x* A
v/
>0 Positive d. Minimum
@,
- ege . //
=0 Positive semi-d. Valley \y
N
=0 Indef Saddl %}&\\
: ndefinite addlepoint '
. . . //
<0 Negative semi-d. Ridge —
-
<0 Negative d. Maximum /?‘A N\

Optimization with inequality conditions
Example
flz) =2l +25 g(z)=2i+z)—1
— min

f(l: rEeR"?

s.t.g(z) <0

Tot flx) = 2+

~—

iso-contours of f(z)

minimum of f(z)

v

=N\

feasible region g(z) <0

m@

~

9(r) = z°+1,°-

5

5

How can we recognize that
some feasible point is at
local minimum?

minimum of f(z)
CU*

3

minimum of f(x)

5

(R

S

5

Vi(zg) = 0
Vif(xp) > 0

Cd

Ly

minimum of f(x)

~

N

Fasy in this case!
Just use unconstrained
optimality conditions.

S
>

Ly

')
)

2

Thus, if the constraints of the type of inequalities are inactive in the constrained problem, then
don't worry and write out the solution to the unconstrained problem. However, this is not the
whole story &). Consider the second childish example

fl@) = (21 -1)"+ (22 + 1) g(z) =] +a; -1
f(z) — min

z€R™
s.t.g(z) <0

Lot flx) = (x1)+ (24 1)

5

minimum of f(z)

T~

iso-contours of f(z)

<

' f(x) = (3-1)7F (2 1)

feasible region g(x) <0
(=) Ny minimum of f(x)

9(x) = @ +w,-1

=

How can we recognize that
some feasible point is at
local minimum?

Not very easy in this case!
Even gradient will not be
zero at local optimum @

Effectively have an
optimization problem with an
equality constraint g(z") = 0

/ -Vf(zp

-Vf(x*) = AVh(z") X

<

-

Not a constrained
local minimum as

-Vf(zp) points in]
towards the feasible / ‘
region

RS Q) | Vv
-Vi(r)

—

So, we have a problem:

f(z) — min
TeR"™
s.t.g(z) <0
Two possible cases:
g(z) < Oisinactive. g(z*) < 0 g(z) < Ois active. g(z*) = 0

Necessary conditions
* g(z*) =0
Vi) o T Sa) = AVfe) 2> 0
vgf(m*) -0 Sufficient conditions
(y, V2. L(z*, A)y) >0,
Vy#0€R": Vg(z*)'y=0

Combining two possible cases, we can write down the general conditions for the problem:

f(z) — min
zeR"

s.t.g(z) <0

Let's define the Lagrange function:

L(:C, >‘) - f(m) + /\g(m)
Then x* point - local minimum of the problem described above, if and only if:
(1) V,L(z*,*) =0
(2) A* >0
(3) Ag(z") =
(4) g(=) 0
(5) (y, Vi L(z™, A%)y) > 0
vy7é06R":vg()Ty <0

0

It's noticeable, that L(z*, *) = f(«*). Conditions A* = 0, (1), (4) are the first scenario
realization, and conditions A* > 0, (1), (3) - the second.

General formulation

fo(z) — min
zeR"

sit. fi(z) <0,i=1,...,m
hi(z) =0, i=1,...,p

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

L(z,)\, v) +Z>\ filz Z hi(z)

Karush-Kuhn-Tucker conditions

Necessary conditions

Let z*, (A*, v*) be a solution to a mathematical programming problem with zero duality gap (the
optimal value for the primal problem p* is equal to the optimal value for the dual problem d*).Let
also the functions f, f;, h; be differentiable.

o V.L(z*\,v*)=0
V,L(z*, A, v) = 0
> 0i=1,...,m
Affi(z*)=0,i=1,...,m
fl(w*) SO,izl,...,m

Some regularity conditions

These conditions are needed in order to make KKT solutions necessary conditions. Some of them
even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have
regularity, you can write down necessary second order conditions (y, V2 L(z*, *,v*)y) > 0
with semi-definite hessian of Lagrangian.

e Slater's condition. If for a convex problem (i.e., assuming minimization, fo, f; are convex
and h; are affine), there exists a point @ such that h(z) = 0 and f;(z) < 0. (Existance of
strictly feasible point), than we have a zero duality gap and KKT conditions become necessary
and sufficient.

¢ Linearity constraint qualification If f; and h; are affine functions, then no other condition
is needed.

e For other examples, see wiki.

Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as
follows. The solution x*, A*, v*, which satisfies the KKT conditions (above) is a constrained local
minimum if for the Lagrangian,

p

L(z,\,v) = fo(z) + zm: Aifi(@) +) vihi(z)
i1

i=1
the following conditions holds:
(y, V2 L(z*,*,v*)y) > 0
Vy#0€R": Vh(z*) 'y <0,VFiz*) 'y <0
i=1,...,p Vj:fi(z*)=0

References

e |ecture on KKT conditions (very intuitive explanation) in course "Elements of Statistical
Learning" @ KTH.
e One-line proof of KKT

Example 1
Linear Least squares Write down exact solution of the linear least squares problem:

|Az — b||* — min, A € R™"
zeR™

Consider three cases:

Tm<n
2m=n
3m>n

o (loproauad TXoPUX
Portfolio optimization M&P@E“‘*q

source

Portfolio allocation vector

n oux.
M In this example we show how to do portfolio optimization using CVXPY. We begin with the

ot
n basic definitions. In portfolio optimization we have some amount of money to invest in any of
W € n different assets. We ¢ rm.‘c_n what fractions—ef ap (oo tainvest in each asset ¢,
— = - Con .
pwe i=1,...,n 1(&)".&- weQ wko OW?B Pof’h%&\o
n= ’? We call w € R" the portfolio allocation vector. We of course have the constraint that
,TC w, 17w = 1. The allocation w; < 0 means a short position in asset ¢, or that we borrow shares
W to sell now that we must replace later. The allocation w > 0 is a long only portfolio. The
\'NDX L quantity o220 VST S\ Wy <0
useT \wW» ’ ’
Jwlr = 17w, +1Tw_ fon = 4
0.%

| n oviks
0. is known as leverage. w“ - \\}JL\ /
-0 Asset returns “ 1 -Z N~ > i

“ 03 +0M £0l We will only model investments held for one period. The initial prices are p; > 0. The end of
M- (I = (2 Pperiod prices are p; > 0. The asset (fractional) returniare r; = (p;" — p;)/pi. The porfolio
&f(rac;f.i‘ir:al) returnis R T rTw. 3‘\?'\60'\0& H

6070 D, euwh oy ukp
bpég'zzTE RO o :109 o
gt M "? /. ~nasl : - ..nK\nMLT& i A“L““?.A [N] AETE

|| 2 0co ' N n | NN
- . .. Wi
O*“aﬂ-'-“‘u‘ %()dl ‘ 5. v J V
603 vt ‘A FA
T— A common model is that r is a random variable with mean Er = p and covariance
E(r — u)(r — u)T = . It follows that R is a random variable with ER = pfw and rA W —> M
- var(R) = wl Sw. ER is the (mean) return of the portfolio. var(R) is the risk of the Wi
?,kc,(. portfolio. (Risk is also sometimes given as std(R) = y/var(R).) " kﬂ/ﬂ* o R U
gwn
WT 2 \A) Portfolio optimization has two competing objectives: high return and low risk. oY “‘”
qsle yMx B¢
‘ Classical (Markowitz) portfolio optlmlzatlon ¥ 0.09 0.0\ -00
o Muwtlassmal (Markowitz) portfolio optimization solves Twe optimization problem
~ut) W = |
M'::) ‘; W2w maximize pulw — 'waZw 4\“ 20
‘W >0 subject to 1Tw=1, weWw, P.w\-r\l:wz"' fbw

where w € R" is the optimization variable, W is a set of allowed portfolios (e.g., W = Ri
for a long only portfolio), and v > 0 is the risk aversion parameter.

The objective ,uT'w — 'waZ'w is the risk-adjusted return. Varying <y gives the optimal risk-
return trade-off. We can get the same risk-return trade-off by fixing return and minimizing
risk.

Example

In the following code we compute and plot the optimal risk-return trade-off for 10 assets,
restricting ourselves to a long only portfolio.

Generate data for long only portfolio optimization.
import numpy as np

np.random.seed(1)

n = 10

mu = np.abs(np.random.randn(n, 1))

Sigma = np.random.randn(n, n)

Sigma = Sigma.T @ Sigma

Long only portfolio optimization.
import cvxpy as cp

w = cp.Variable(n)

gamma = cp.Parameter (nonneg=True)

ret = mu.T @ w

risk = cp.quad form(w, Sigma)

prob = cp.Problem(cp.Minimize(gamma*risk - ret),
[cp.sum(w) == 1,
w >= 0])

Compute trade-off curve.
from tgdm.auto import tgdm
SAMPLES = 100
risk data = np.zeros(SAMPLES)
ret data = np.zeros(SAMPLES)
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
for i in tgdm(range(SAMPLES)):
gamma.value = gamma_vals[i]
prob.solve()

risk data[i] = cp.sqrt(risk).value

ret data[i] = ret.value

100% || 100/100 [00:00<00:00, 478.73it/s]

Plot long only trade-off curve.
import matplotlib.pyplot as plt
¢matplotlib inline

$config InlineBackend.figure format

markers _on = [29, 40]

fig = plt.figure()

ax = fig.add subplot(111)
plt.plot(risk data, ret data,
for marker in markers on:

plt.plot(risk data[marker], ret data[marker],

'g-")

'bs'")

ax.annotate(r"$\gamma = %.2f$" % gamma vals[marker], xy=(risk data[marker

for i in range(n):

plt.plot(cp.sqgrt(Sigma[i,i]).value, mu[i],

plt.xlabel('Standard deviation')
plt.ylabel('Return')

ro')

plt.show()
2.0+
o
1.5 A
-
2
[0}
e
1.0 +
o
0.5 - o
° (]
0.5 1.0 1.5 2.0 2.5 3.0

Standard deviation

We plot below the return distributions for the two risk aversion values marked on the trade-
off curve. Notice that the probability of a loss is near O for the low risk value and far above 0

for the high risk value.

Plot return distributions for two points on the trade-off curve.

import scipy.stats as spstats

plt.figure()

for midx, idx in enumerate(markers on):

gamma.value = gamma vals[idx]
prob.solve()

X = np.linspace(-2, 5,
plt.plot(x,

1000)

plt.xlabel('Return')

spstats.norm.pdf(x, ret.value, risk.value),

label=r"$\gamma

plt.ylabel('Density')
plt.legend(loc='upper right')
plt.show()

1.2 A

Return

Portfolio constraints

There are many other possible portfolio constraints besides the long only constraint. With no
constraint (W = R"), the optimization problem has a simple analytical solution. We will look

in detail at a leverage limit, or the constraint that ||w||; < L™

Another interesting constraint is the market neutral constraint mITw = 0, where m; is the
capitalization of asset i. M = m”r is the market return, and m w = cov(M, R). The
market neutral constraint ensures that the portfolio return is uncorrelated with the market

return.

Example

In the following code we compute and plot optimal risk-return trade-off curves for leverage
limits of 1, 2, and 4. Notice that more leverage increases returns and allows greater risk.

Portfolio optimization with leverage limit.
Lmax = cp.Parameter()
prob = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

Compute trade-off curve for each leverage limit.
L vals = [1, 2, 4]
SAMPLES = 100
risk data = np.zeros((len(L_vals), SAMPLES))
ret data = np.zeros((len(L_vals), SAMPLES))
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
w_vals = []
for k, L val in enumerate(L vals):

for i in range(SAMPLES):

Lmax.value = L val

gamma.value = gamma vals[i]
prob.solve(solver=cp.CVXOPT)

risk datal[k, i] = cp.sqgrt(risk).value
ret datal[k, i] = ret.value

Plot trade-off curves for each leverage limit.
for idx, L val in enumerate(L_vals):
plt.plot(risk data[idx,:], ret data[idx,:], label=r"$L"{\max}$ = %d" % L __
for w val in w vals:
w.value = w_val
plt.plot(cp.sqrt(risk).value, ret.value, 'bs')
plt.xlabel('Standard deviation')
plt.ylabel('Return')
plt.legend(loc='lower right')
plt.show()

Return
w

0 1 2 3 4 5 6 7
Standard deviation

We next examine the points on each trade-off curve where wl Tw = 2. We plot the amount
of each asset held in each portfolio as bar graphs. (Negative holdings indicate a short
position.) Notice that some assets are held in a long position for the low leverage portfolio
but in a short position in the higher leverage portfolios.

Portfolio optimization with a leverage limit and a bound on risk.
prob = cp.Problem(cp.Maximize(ret),

[cp.sum(w) == 1,

cp.norm(w, 1) <= Lmax,

risk <= 2])

Compute solution for different leverage limits.
for k, L val in enumerate(L_vals):

Lmax.value = L _val

prob.solve()

w_vals.append(w.value)

Plot bar graph of holdings for different leverage limits.

' [

colors = ['b', 'g', 'r']

indices = np.argsort(mu.flatten())
for idx, L val in enumerate(L_vals):
plt.bar(np.arange(l,n+l) + 0.25*idx - 0.375, w_vals[idx][indices], color
label=r"s$L"{\max}$ = %d" % L _val, width = 0.25)
plt.ylabel(r"sw i$", fontsize=16)
plt.xlabel(r"i", fontsize=16)
plt.xlim([1-0.375, 10+.375])
plt.xticks(np.arange(1l,n+1l))
plt.show()

1.0 A

0.8 1

0.6

0.4 1

Wi

0.2 A

0.0 A I

-0.2 A

~0.4 -

Variations

There are many more variations of classical portfolio optimization. We might require that
pTw > R™™ and minimize w” Zw or || £/2w||2. We could include the (broker) cost of short
positions as the penalty s7(w)_ for some s > 0. We could include transaction costs (from a
previous portfolio wP™") as the penalty

kL w —wP™v |7 k> 0.

Common values of paren =1, 3/2, 2.

Factor covariance model

A particularly common and useful variation is to model the covariance matrix X as a factor
model

¥ = FSFT + D,

where F' € R"Xk, k < n is the factor loading matrix. k is the number of factors (or sectors)
(typically 10s). Fj; is the loading of asset i to factor j. D is a diagonal matrix; Dy; > 0 is the
idiosyncratic risk. % > 0 is the factor covariance matrix.

FTwe RF gives the portfolio factor exposures. A portfolio is factor j neutral if
(177Hu)j:: 0.

Portfolio optimization with factor covariance model
Using the factor covariance model, we frame the portfolio optimization problem as

maximize pTw — 7 (fTif + w! Dw)
subject to 1Tw=1, f=FTw
weW, feF,

where the variables are the allocations w € R" and factor exposures f € R" and F gives
the factor exposure constraints.

Using the factor covariance model in the optimization problem has a computational
advantage. The solve time is O(nk?) versus O(n?) for the standard problem.

Example

In the following code we generate and solve a portfolio optimization problem with 50 factors
and 3000 assets. We set the leverage limit = 2 and v = 0.1.

We solve the problem both with the covariance given as a single matrix and as a factor
model. Using CVXPY with the OSQP solver running in a single thread, the solve time was
173.30 seconds for the single matrix formulation and 0.85 seconds for the factor model
formulation. We collected the timings on a MacBook Air with an Intel Core i7 processor.

Generate data for factor model.

n = 3000

m = 50

np.random.seed (1)

mu = np.abs(np.random.randn(n, 1))

Sigma tilde = np.random.randn(m, m)

Sigma tilde = Sigma tilde.T.dot(Sigma_ tilde)

D = np.diag(np.random.uniform(0, 0.9, size=n))
F = np.random.randn(n, m)

Factor model portfolio optimization.

w = cp.Variable(n)

f = F.T*w

gamma = cp.Parameter (nonneg=True)

Lmax = cp.Parameter()

ret = mu.T*w

risk = cp.quad_form(f, Sigma_tilde) + cp.quad_form(w, D)

prob_factor = cp.Problem(cp.Maximize(ret - gamma*risk),
[cp.sum(w) == 1,
cp.norm(w, 1) <= Lmax])

Solve the factor model problem.
Lmax.value = 2

gamma.value = 0.1
prob_factor.solve(verbose=True)

CVXPY
v1.2.0

(CVXPY) Mar 24 01:28:51 PM: Your problem has 3000 variables, 2 constraints, an

/Users/bratishka/anaconda3/1lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of ~° has resulted in matrix multiplication.
Using ~ "% for matrix multiplication has been deprecated since CVXPY 1.1.
Use °° for matrix-scalar and vector-scalar multiplication.
Use ~"@° " for matrix-matrix and matrix-vector multiplication.
Use ~“multiply™~ for elementwise multiplication.
This code path has been hit 1 times so far.

%~

*

warnings.warn(msg, UserWarning)
/Users/bratishka/anaconda3/1lib/python3.9/site-packages/cvxpy/expressions/expre
ssion.py:593: UserWarning:
This use of has resulted in matrix multiplication.
Using "~ * for matrix multiplication has been deprecated since CVXPY 1.1.
Use "~ * " for matrix-scalar and vector-scalar multiplication.
Use ~~@ " for matrix-matrix and matrix-vector multiplication.
Use ~"multiply "~ for elementwise multiplication.
This code path has been hit 2 times so far.

*

warnings.warn(msg, UserWarning)
(CVXPY) Mar 24 01:28:51 PM: It is compliant with the following grammars: DCP,
DQCP
(CVXPY) Mar 24 01:28:51 PM: CVXPY will first compile your problem; then, it wi
11 invoke a numerical solver to obtain a solution.

(CVXPY) Mar 24 01:28:51 PM: Compiling problem (target solver=0SQP).

(CVXPY) Mar 24 01:28:51 PM: Reduction chain: FlipObjective -> CvxAttr2Constr -
> Qp2SymbolicQp -> QpMatrixStuffing -> OSQP

(CVXPY) Mar 24 01:28:51 PM: Applying reduction FlipObjective

(CVXPY) Mar 24 01:28:51 PM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 24 01:28:51 PM: Applying reduction Qp2SymbolicQp

(CVXPY) Mar 24 01:28:51 PM: Applying reduction QpMatrixStuffing

(CVXPY) Mar 24 01:28:51 PM: Applying reduction OSQP

(CVXPY) Mar 24 01:28:51 PM: Finished problem compilation (took 1.366e-01 secon
ds).

(CVXPY) Mar 24 01:28:51 PM: (Subsequent compilations of this problem, using th
e same arguments, should take less time.)

(CVXPY) Mar 24 01:28:51 PM: Invoking solver OSQP to obtain a solution.
OSQP v0.6.2 - Operator Splitting QP Solver
(c) Bartolomeo Stellato, Goran Banjac
University of Oxford - Stanford University 2021
problem: variables n = 6050, constraints m = 6052
nnz(P) + nnz(A) = 172325
settings: linear system solver = gdldl,
eps_abs = 1.0e-05, eps rel = 1.0e-05,
eps prim inf = 1.0e-04, eps dual inf = 1.0e-04,
rho = 1.00e-01 (adaptive),
sigma = 1.00e-06, alpha = 1.60, max iter = 10000
check_termination: on (interval 25),
scaling: on, scaled termination: off
warm start: on, polish: on, time limit: off

iter objective
1 -2.1359e+03
200 -4.1946e+00
400 -4.6288e+00
600 -4.6444e+00
800 -4.6230e+00
1000 -4.6223e+00
1200 -4.6205e+00
1400 -4.6123e+00
1575 -4.6064e+00

status:

solution polish:
number of iterations:
optimal objective:

run time:

pri res

N O 000K NWRFJ

optimal rho estimate:

.63e+00
.59e-03
.02e-04
.20e-04
.09e-04
.59e-05
.56e-05
.44e-05
.97e-05

solved
unsucc
1575

-4.606
l.l4e+
3.87e-

dua res rho

3.73e+02
7.86e-03
6.0le-04
7.87e-04
3.70e-04
1.04e-04
9.35e-06
1.54e-04
4.06e-05

W wwwwwwwr

essful

4
00s
01

.00e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01
.60e-01

time

H = 0N 0 & WwWEHEN

.38e-02s
.82e-01s
.18e-01s
.55e-01s
.91e-01s
.27e-01s
.65e-01s
.00e+00s
.12e+00s

(CVXPY) Mar 24
(CVXPY) Mar 24
(CVXPY) Mar 24

01:28:
01:28:
01:28:

52 PM:
52 PM:
52 PM:

Problem status: optimal
Optimal value: 4.606e+00

Compilation took 1.366e-01 seconds

(CVXPYi Mar 24 01:28:52 PM: Solver iincludini time sEent in interfacei took 1.

4.606413077728827

Standard portfolio optimization with data from factor model.
risk = cp.quad form(w, F.dot(Sigma tilde).dot(F.T) + D)
prob = cp.Problem(cp.Maximize(ret - gamma*risk),

[cp.sum(w)

cCp.norm(w,

4

1) <= Lmax])

Uncomment to solve the problem.
WARNING: this will take many minutes to run.
prob.solve(verbose=True, max iter=30000)

CVXPY
vl.2.0

(CVXPY) Mar 24 01:28:54 PM: Your problem has 3000 variables, 2 constraints,

print('Factor model solve time =

print('Single model solve time = {}'.format(prob.solver stats.solve_time))

Factor model solve time =
Single model solve time = 447.57964334400003

Materials

2.1817036670000003

e Portfolio Optimization Algo Trading colab notebook

e Multi objective portfolio optimization

an

{}'.format (prob factor.solver stats.solve ti

