Example 3

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}(x = a_i) = p_i$, where i = 1, ..., n, and $a_1 < ... < a_n$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^n$ belongs to the probabilistic simplex, i.e.

 $P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\} = \{p \mid p_1 + \ldots + p_n = 1, p_i \ge 0\}$. Determine if the following sets of p are convex: 1. $\alpha < \mathbb{E}f(x) < \beta$, where $\mathbb{E}f(x)$ stands for expected value of $f(x) : \mathbb{R} \to \mathbb{R}$, i.e.

$\mathbb{E}j$	$\mathbb{E}f(x) = \sum_{i=1}^n p_i f(a_i) \ 1. \ \mathbb{E}x^2 \leq lpha \ 1. \ \mathbb{V}x \leq lpha$																					
•	•	.1=	· ·	•	•	•	·	•	•	·		•	·	·	•	•		•	•	·	•	·
		•	•	•	•		•			•			•	•	•		•			•		
•	•	•	•	•	•		•		•	•		•	•	•	•		•		•	•	•	•
•	•	•	•	•	•		•		•	•		•	•	•	•	•	•	•	•	•	•	•
·		·	•			·	·	·	•	•	·	·	·	·	·	·	•	·	·	•	•	·
•	·	•							•					·							•	
·		·																			•	
•						•															•	
•						•															•	
·		•		•		•			•												•	
•	•	•	•	•		·			·			·				•					•	
•	•	•	•	•	•	•			•								•		•			•
•	•	•	•	•	•	•	•				·			•	•	·	·	•	•	•	•	•
·	•	·	•	•	•	·	·	·	•	·	·	·	·	•	·	·	·	•	·	•	·	·

Convex function

Epigraph

For the function f(x), defined on $S \subseteq \mathbb{R}^n$, the following set:

$$\mathrm{epi}\ f = \{[x,\mu] \in S imes \mathbb{R}: f(x) \leq \mu\}$$

is called **epigraph** of the function f(x)

Sublevel set

For the function f(x), defined on $S \subseteq \mathbb{R}^n$, the following set:

$$\mathcal{L}_eta=\{x\in S: f(x)\leq eta\}$$

is called **sublevel set** or Lebesgue set of the function f(x)

Criteria of convexity

First order differential criterion of convexity

The differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x,y \in S$:

$$f(y) \geq f(x) + \nabla f^T(x)(y-x)$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x \in int(S) \neq \emptyset$:

In other words, $orall y \in \mathbb{R}^n$:

$$\langle y,
abla^2 f(x) y
angle \geq 0$$

Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If f(x) - is a convex function defined on the convex set $S \subseteq \mathbb{R}^n$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is closed if and only if for any β sublevel set \mathcal{L}_β is closed.

Reduction to a line

 $f: S \to \mathbb{R}$ is convex if and only if S is convex set and the function g(t) = f(x + tv) defined on $\{t \mid x + tv \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^n$, which allows to check convexity of the scalar function in order to establish covexity of the vector function.

Strong convexity

f(x), **defined on the convex set** $S\subseteq \mathbb{R}^n$, is called μ -strongly convex (strogly convex) on S, if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \mu\lambda(1 - \lambda)\|x_1 - x_2\|^2$$

for any $x_1, x_2 \in S$ and $0 \leq \lambda \leq 1$ for some $\mu > 0$.

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S \subseteq \mathbb{R}^n \mu$ -strongly convex if and only if $\forall x, y \in S$:

$$f(y)\geq f(x)+
abla f^T(x)(y-x)+rac{\mu}{2}\|y-x\|^2$$

Let $y = x + \Delta x$, then the criterion will become more tractable:

$$f(x+\Delta x)\geq f(x)+
abla f^T(x)\Delta x+rac{\mu}{2}\|\Delta x\|^2$$

Second order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in int(S) \neq \emptyset$:

$$abla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y,
abla^2 f(x) y
angle \geq \mu \|y\|^2$$

Facts

- f(x) is called (strictly) concave, if the function -f(x) (strictly) convex.
- Jensen's inequality for the convex functions:

$$f\left(\sum_{i=1}^n lpha_i x_i
ight) \leq \sum_{i=1}^n lpha_i f(x_i)$$

for $\alpha_i \geq 0; \quad \sum_{i=1}^n \alpha_i = 1$ (probability simplex)

For the infinite dimension case:

$$f\left(\int\limits_{S}xp(x)dx
ight)\leq\int\limits_{S}f(x)p(x)dx$$

If the integrals exist and $p(x) \geq 0, \quad \int_S p(x) dx = 1$

• If the function f(x) and the set S are convex, then any local minimum $x^* = \arg \min_{x \in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x) + \beta g(x), (\alpha \ge 0, \beta \ge 0)$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex
- Pointwise maximum (supremum): If $f_1(x),\ldots,f_m(x)$ are convex, then $f(x)=\max\{f_1(x),\ldots,f_m(x)\}$ is convex
- If f(x,y) is convex on x for any $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ is convex
- If f(x) is convex on S, then g(x,t)=tf(x/t) is convex with $x/t\in S, t>0$
- Let $f_1: S_1 \to \mathbb{R}$ and $f_2: S_2 \to \mathbb{R}$, where range $(f_1) \subseteq S_2$. If f_1 and f_2 are convex, and f_2 is increasing, then $f_2 \circ f_1$ is convex on S_1

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$
- Quasiconvex: $f(\lambda x + (1-\lambda)y) \leq \max\{f(x), f(y)\}$
- Pseudoconvex: $\langle
 abla f(y), x-y
 angle \geq 0 \longrightarrow f(x) \geq f(y)$

• Discrete convexity: $f:\mathbb{Z}^n
ightarrow\mathbb{Z}$; "convexity + matroid theory."

References

• Steven Boyd lectures Suvrit Sra lectures Martin Jaggi lectures F(x) = 10+10 Example 4 Boln. BOCHYTAA Show, that $f(x) = c^{\top}x + b$ is convex and concave. Penerice: df=<cdx> => vf=c Pacenoipuse 74. $d^2 f = \langle dc, dx_1 \rangle = 0$ ~f ≥0 ¥xeR[°]-=> f - B6 MyKNA. frel 2) BOTHYTOCTO F(X) BULLAKUOCIE $\nabla^2(-f(x)) = 0^{n} > 0$ $A = A^{T}$ Example 5 Show, that $f(x) = x^{\top} A x$, where $A \succeq 0$ is convex on \mathbb{R}^n . Penence. $= d(\langle x, A \times \rangle) = \langle (A + A') \rangle x, dx \rangle =$ = (2Ax,dx> $rac{1}{2}f = 2Ax$ $= \langle 2Adx, dx_i \rangle = \langle 2Adx_i, dx \rangle$ $f = \langle d(2Ax), dx \rangle$

ē1

 $= \sum \nabla^{2} f = 2A \ge 0$ $eeuu A \ge 0 \longrightarrow \forall x \in \mathbb{R}^{n} \quad x^{T} A x \ge 0 \quad | \cdot 2$ $x^{T} \cdot (2A) \cdot x \ge 0 \cdot 2$

Example 6

																	n					
Show, that $f(x)$ is convex, using first and second order criteria, if $f(x) = \sum\limits_{i=1}^{n} x_i^4.$																						
•	·	•	•	·	·	·	•							·	·	•	i=i	·	•	·	•	•
•	·	•	·	·	•	•	·			•	·	·	·	·	·	·	·	·	•	·	•	·
•										•							•		•			•
•		•		•			•			•	•	•	•	•				•	•	•		•
•		•								•									•			
•		•	•	•			•			•		•	•				•		•			•
•	•		·	•	•	•	•	•	•		·	•	•	•	·	•	•	•	•	•	•	•
·		•								•		•							•			
•		•								•		•							•			
•																						
•																						
•										•				•								
•										•							•		•			
•										•				•								
Ex	amp	ole 7																				
_ .	1.41			T	ъ <i>п</i>			c		e (、 、		$^{-1}$, .					

Find the set of $x\in \mathbb{R}^n$, where the function $f(x)=rac{-1}{2(1+x^ op x)}$ is convex, strictly convex, strongly																
convex?					-(- '											
					-			-		-		-		-	-	-
		·		·	•	• •	•	•	•	•		•	•	•	•	•
	• •		• •	•	•			•	•	•		•	·	•	·	•
	• •		· ·		•			·	•	•			·	·	·	•
			· ·		•			•	•	•			·	•	•	•
					•			•	•			•	•	•	•	•
	· ·	•	· ·	•	•		•	•	•	•		•	•	·	•	•
														•		•
									•					•		•
													•			

Optimality conditions. KKT

Background

Extreme value (Weierstrass) theorem

Let $S \subset \mathbb{R}^n$ be compact set and f(x) continuous function on S. So that, the point of the global minimum of the function f(x) on S exists.

Lagrange multipliers

Consider simple yet practical case of equality constraints:

$$egin{aligned} f(x) & o \min_{x \in \mathbb{R}^n} \ ext{s.t.} \ h_i(x) &= 0, i = 1, \dots, p \end{aligned}$$

The basic idea of Lagrange method implies switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$L(x,
u)=f(x)+\sum_{i=1}^m
u_ih_i(x)
ightarrow \min_{x\in\mathbb{R}^n,
u\in\mathbb{R}^p}$$

General formulations and conditions

$$f(x) o \min_{x \in S}$$

We say that the problem has a solution if the budget set **is not empty**: $x^* \in S$, in which the minimum or the infimum of the given function is achieved.

Optimization on the general set S.

Direction $d \in \mathbb{R}^n$ is a feasible direction at $x^* \in S \subseteq \mathbb{R}^n$ if small steps along d do not take us outside of S.

Consider a set $S \subseteq \mathbb{R}^n$ and a function $f : \mathbb{R}^n \to \mathbb{R}$. Suppose that $x^* \in S$ is a point of local minimum for f over S, and further assume that f is continuously differentiable around x^* .

1. Then for every feasible direction $d\in \mathbb{R}^n$ at x^* it holds that $abla f(x^*)^ op d\geq 0$

then (if necessary condition is also satisfied) x^* is a local minimum(maximum) of f(x).

Note, that if $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) = 0$, i.e. the hessian is positive *semidefinite*, we cannot be sure if x^* is a local minimum (see <u>Peano surface</u> $f(x, y) = (2x^2 - y)(y - x^2)$).

Convex case

It should be mentioned, that in **convex** case (i.e., f(x) is convex) necessary condition becomes sufficient. Moreover, we can generalize this result on the class of non-differentiable convex functions.

Let $f(x):\mathbb{R}^n o\mathbb{R}$ - convex function, then the point x^* is the solution of (UP) if and only if:

$$0_n\in\partial f(x^*)$$

One more important result for convex constrained case sounds as follows. If $f(x):S o\mathbb{R}$ - convex function defined on the convex set S, then:

- Any local minima is the global one.
- The set of the local minimizers S^{*} is convex.

