Example 3

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}\left(x=a_{i}\right)=p_{i}$, where $i=1, \ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^{n}$ belongs to the probabilistic simplex, ie.
$P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}=\left\{p \mid p_{1}+\ldots+p_{n}=1, p_{i} \geq 0\right\}$. Determine if the following sets of p are convex: 1. $\alpha<\mathbb{E} f(x)<\beta$, where $\mathbb{E} f(x)$ stands for expected value of $f(x): \mathbb{R} \rightarrow \mathbb{R}$, ie.
$\mathbb{E} f(x)=\sum_{i=1}^{n} p_{i} f\left(a_{i}\right) 1 . \mathbb{E} x^{2} \leq \alpha 1 . \mathbb{V} x \leq \alpha$

Convex function

Convex function

$$
\begin{aligned}
& \text { unction } \\
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}
\end{aligned} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

The function $f(x)$, which is defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called convex S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1 . \quad X_{1} \in \mathbb{R}^{n} \quad \boldsymbol{x}_{2} \in \mathbb{R}^{n}$
If above inequality holds as strict inequality $x_{1} \neq x_{2}$ and $0<\lambda<1$, then function is called strictly
convex S

$$
f\left(x_{\lambda}\right) \leqslant \underbrace{\lambda \cdot f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)}
$$

- $f(x)=x^{p}, p>1, \quad S=\mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, \quad p>1, S=\mathbb{R}$
- $f(x)=e^{c x}, \quad c \in \mathbb{R}, S=\mathbb{R}$
- $f(x)=-\ln x, \quad S=\mathbb{R}_{++}$
- $f(x)=x \ln x, \quad S=\mathbb{R}_{++}$

$f\left(x_{\lambda}\right) \leq \lambda f_{1}+(1-\lambda) f_{2}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, \quad S=\mathbb{R}^{n}$
- $f(X)=\lambda_{\max }(X), \quad X=X^{T}$
- $f(X)=-\log \operatorname{det} X, \quad S=S_{++}^{n}$

Epigraph

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\text { epi } f=\{[x, \mu] \in S \times \mathbb{R}: f(x) \leq \mu\}
$$

is called epigraph of the function $f(x)$

Sublevel set

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\mathcal{L}_{\beta}=\{x \in S: f(x) \leq \beta\}
$$

is called sublevel set or Lebesgue set of the function $f(x)$

Criteria of convexity

First order differential criterion of convexity

The differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x, y \in S$:

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x
$$

Second order differential criterion of convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset:$

$$
\nabla^{2} f(x) \succeq 0
$$

$$
\forall x_{0} \in \mathbb{R}^{n}
$$

$$
x_{0}^{\top} \nabla^{2} f(x) \cdot x_{0} \geqslant 0
$$

In other words, $\forall y \in \mathbb{R}^{n}$:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq 0
$$

Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If $f(x)$ - is a convex function defined on the convex set $S \subseteq \mathbb{R}^{n}$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

Reduction to a line

$f: S \rightarrow \mathbb{R}$ is convex if and only if S is convex set and the function $g(t)=f(x+t v)$ defined on $\{t \mid x+t v \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^{n}$, which allows to check convexity of the scalar function in order to establish covexity of the vector function.

Strong convexity

$f(x)$, defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called μ-strongly convex (strogly convex) on S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)-\mu \lambda(1-\lambda)\left\|x_{1}-x_{2}\right\|^{2}
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$ for some $\mu>0$.

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n} \mu$-strongly convex if and only if $\forall x, y \in S$:

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)+\frac{\mu}{2}\|y-x\|^{2}
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x+\frac{\mu}{2}\|\Delta x\|^{2}
$$

Second order differential criterion of strong convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is called μ-strongly convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset$:

$$
\nabla^{2} f(x) \succeq \mu I
$$

In other words:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq \mu\|y\|^{2}
$$

Facts

- $f(x)$ is called (strictly) concave, if the function $-f(x)$ - (strictly) convex.
- Jensen's inequality for the convex functions:

$$
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

for $\alpha_{i} \geq 0 ; \quad \sum_{i=1}^{n} \alpha_{i}=1$ (probability simplex)
For the infinite dimension case:

$$
f\left(\int_{S} x p(x) d x\right) \leq \int_{S} f(x) p(x) d x
$$

If the integrals exist and $p(x) \geq 0, \quad \int_{S} p(x) d x=1$

- If the function $f(x)$ and the set S are convex, then any local minimum $x^{*}=\arg \min _{x \in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x)+\beta g(x),(\alpha \geq 0, \beta \geq 0)$
- Composition with affine function $f(A x+b)$ is convex, if $f(x)$ is convex
- Pointwise maximum (supremum): If $f_{1}(x), \ldots, f_{m}(x)$ are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex
- If $f(x, y)$ is convex on x for any $y \in Y: g(x)=\sup _{y \in Y} f(x, y)$ is convex
- If $f(x)$ is convex on S, then $g(x, t)=t f(x / t)$ - is convex with $x / t \in S, t>0$
- Let $f_{1}: S_{1} \rightarrow \mathbb{R}$ and $f_{2}: S_{2} \rightarrow \mathbb{R}$, where range $\left(f_{1}\right) \subseteq S_{2}$. If f_{1} and f_{2} are convex, and f_{2} is increasing, then $f_{2} \circ f_{1}$ is convex on S_{1}

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; not closed under addition!
- Exponentially convex: $\left[f\left(x_{i}+x_{j}\right)\right] \succeq 0$, for x_{1}, \ldots, x_{n}
- Operator convex: $f(\lambda X+(1-\lambda) Y) \preceq \lambda f(X)+(1-\lambda) f(Y)$
- Quasiconvex: $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}$
- Pseudoconvex: $\langle\nabla f(y), x-y\rangle \geq 0 \longrightarrow f(x) \geq f(y)$

References

- Steven Boyd lectures
- Suvrit Sra lectures
- Martin Jaggy lectures

Example 4

$$
\begin{aligned}
& f(x)=k x+b \\
& f^{\prime}(x)=k \\
& f^{\prime}(x)=0
\end{aligned}
$$

Show, that $f(x)=c^{\top} x+b$ is convex and concave.
Pemenue:

1) Pacc⿻o丨ipull $\nabla^{2} f . d f=\langle c d x\rangle \Rightarrow \nabla f=c$

$$
\begin{array}{r}
d^{2} f=\left\langle d c, d x_{1}\right\rangle=0 \Rightarrow \nabla^{2} f=Q^{n \times n} \\
\nabla^{2} f \geq 0 \quad \forall x \in \mathbb{R}^{n} \rightarrow x^{T} \cdot \nabla^{2} f \cdot x=0
\end{array}
$$

$$
\Rightarrow f-B \in \text { My } \quad \therefore \wedge A .
$$

2) Bог нутоств $f(x)=$ Bыпуклость - $f(x)$

$$
\nabla^{2}(-f(x))=(1)^{\text {nan }} \geq 0
$$

Example 5

$$
\longrightarrow A=A^{\top}
$$

Show, that $f(x)=x^{\top} A x$, where $A \succeq 0$ is convex on \mathbb{R}^{n}.
Revenue: 1$) d f=d(\langle x, A x\rangle)=\left\langle\left(A+A^{\top}\right) x, d x\right\rangle=$

$$
\begin{array}{r}
\nabla f=2 A x \\
d^{2} f=\left\langle d(2 A x), d x_{1}\right\rangle=\left\langle 2 A d x, d x_{1}\right\rangle=\left\langle 2 A d x_{1}, d x\right\rangle \\
=\rangle \quad \nabla^{2} f=2 A \geq 0 \\
\text { come } A \geq 0 \rightarrow \forall x \in \mathbb{R}^{n} \quad x^{\top} A x \geqslant 0 \mid \cdot 2 \\
x^{\top} \cdot(2 A) \cdot x \geqslant 0 \cdot 2
\end{array}
$$

Example 6

Show, that $f(x)$ is convex, using first and second order criteria, if $f(x)=\sum_{i=1}^{n} x_{i}^{4}$.

Example 7

Find the set of $x \in \mathbb{R}^{n}$, where the function $f(x)=\frac{-1}{2\left(1+x^{\top} x\right)}$ is convex, strictly convex, strongly convex?

M1OBOU
NOKANGHGM MUHUMXM
ЯBIA ETCA TNOGANGHGM

TAKAg ФyHKyul PACTËT GOCTPEE HEKOTOPOÚ NAPAEONGI

BbInyknAs,
Ho He

$$
\begin{aligned}
& f(x)=\frac{1}{2}\|A x-b\|_{2}^{2} \\
& f: \mathbb{R}^{n} \rightarrow R \\
& d f=\frac{1}{2} d(\langle A x-b, A x-b\rangle)=A \in \mathbb{R}^{m \times n} \\
& =\frac{1}{2} \cdot(2(A x-b) \cdot A \cdot d x\rangle \quad b \in \mathbb{R} \\
& \Rightarrow d f=\left\langle A^{\top}(A x-b), d x\right\rangle \rightarrow \nabla f=A^{\top}(A x-b) \\
& d^{2} f=\left\langle d\left(A^{\top}(A x-b)\right), d x_{1}\right\rangle=\left\langle A^{\top} A \cdot d x, d x_{1}\right\rangle= \\
& =\left\langle A^{\top} A d x_{1}, d x\right\rangle \\
& \Rightarrow \nabla^{2} f=A_{n \times w}^{\top} A \\
& \text { критерии́ } \\
& \text { Cunb bectpa }
\end{aligned}
$$

$\forall x \in \mathbb{R}^{n}: \quad\left(x^{\top} A^{\top}\right) A x \geq 0$
$(A x)^{\top} A x$

$$
\text { (Ax) } A x, A x\rangle=\|A x\|_{2}^{2} \geqslant 0
$$

$$
\begin{gathered}
\forall x_{0} \in \mathbb{R}^{n} /\{0\} \quad \forall x \in S \text { f:S } \\
x_{0}^{T} \cdot \nabla^{2} f(x) \cdot x_{0}>0 \\
x_{0}^{\top} \nabla^{2} f(x) x_{0} \geqslant \mu \cdot x_{0}^{T} \cdot I x_{0} \\
\mu \cdot x_{0}^{T} x_{0} \\
\mu>0 \quad \mu \cdot\left\|x_{0}\right\|_{2}^{2}
\end{gathered}
$$

reu sonowe $\mu, T \ell \mu$ kpyre Qcithyus
μ - КонетААета cunthóa во ппхкпости.

$$
\begin{aligned}
f(x) & =x^{\top} A x \\
& \Rightarrow \nabla^{2} f=2 A
\end{aligned} \quad A \in \mathbb{S}_{+}^{n}
$$

ennu $A \in S_{+}^{n}$
ennu $A \in \mathbb{S}_{++}^{n}$

$$
A \succeq 0
$$

$$
f-\text { Bolmx KAAA }
$$

f - ие еипьно выпукпкк

$$
\begin{aligned}
A & >0 \\
\nabla^{2} f & >0
\end{aligned}
$$

f - cunorobsinyknAs

$$
\nabla^{2} f=2 A
$$

$\forall x \in \mathbb{R}^{n}$:
$\lambda_{\text {min }}{ }^{\top} x \leq x^{\top} \cdot 2 A \cdot x \leq \lambda_{\text {max }}(2 A) \cdot x^{\top} x$

$$
\begin{gathered}
x^{\top} \cdot 2 A \cdot x \geqslant \mu \cdot x^{\top} x \\
\mu=\lambda_{\min }(2 A)
\end{gathered}
$$

$x^{\top}(2 A) \cdot x \geqslant \lambda_{\text {min }}(2 A) x^{\top} x$

$$
\Rightarrow \mu=2 \cdot \lambda_{\text {miv }}(A)>0
$$

Optimality conditions. KKT

Background

Extreme value (Weierstrass) theorem

Let $S \subset \mathbb{R}^{n}$ be compact set and $f(x)$ continuous function on S. So that, the point of the global minimum of the function $f(x)$ on S exists.

Lagrange multipliers

Consider simple yet practical case of equality constraints:

$$
\begin{aligned}
f(x) & \rightarrow \min _{x \in \mathbb{R}^{n}} \\
\text { s.t. } h_{i}(x) & =0, i=1, \ldots, p
\end{aligned}
$$

The basic idea of Lagrange method implies switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$
L(x, \nu)=f(x)+\sum_{i=1}^{m} \nu_{i} h_{i}(x) \rightarrow \min _{x \in \mathbb{R}^{n}, \nu \in \mathbb{R}^{p}}
$$

General formulations and conditions

$$
f(x) \rightarrow \min _{x \in S}
$$

We say that the problem has a solution if the budget set is not empty: $x^{*} \in S$, in which the minimum or the infimum of the given function is achieved.

Optimization on the general set S.

Direction $d \in \mathbb{R}^{n}$ is a feasible direction at $x^{*} \in S \subseteq \mathbb{R}^{n}$ if small steps along d do not take us outside of S.

Consider a set $S \subseteq \mathbb{R}^{n}$ and a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose that $x^{*} \in S$ is a point of local minimum for f over S, and further assume that f is continuously differentiable around x^{*}.

1. Then for every feasible direction $d \in \mathbb{R}^{n}$ at x^{*} it holds that $\left.\nabla f^{(} x^{*}\right)^{\top} d \geq 0$

$$
\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq 0, \forall x \in S
$$

Unconstrained optimization

bezsenobrar zagare

 ontchlurg yum

General case

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice differentiable function.

$$
\begin{equation*}
f(x) \rightarrow \min _{x \in \mathbb{R}^{n}} \tag{UP}
\end{equation*}
$$

If x^{*} - is a local minimum of $f(x)$, then:

$$
\nabla f\left(x^{*}\right)=0
$$

If $f(x)$ at some point x^{*} satisfies the following conditions:
2. $\nabla^{2} f\left(x^{*}\right)>0-m u$ (UP:Suff.) $\nabla^{2} f\left(x^{*}\right)<0-M$
then (if necessary condition is also satisfied) x^{*} is a local minimum(maximum) of $f(x)$.
Note, that if $\nabla f\left(x^{*}\right)=0, \nabla^{2} f\left(x^{*}\right)=0$, i.e. the hessian is positive semidefinite, we cannot be sure if x^{*} is a local minimum (see Beano surface $f(x, y)=\left(2 x^{2}-y\right)\left(y-x^{2}\right)$).

Convex case

It should be mentioned, that in convex case (ie., $f(x)$ is convex) necessary condition becomes sufficient. Moreover, we can generalize this result on the class of non-differentiable convex functions.

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ - convex function, then the point x^{*} is the solution of (UP) if and only if:

$$
0_{n} \in \partial f\left(x^{*}\right)
$$

One more important result for convex constrained case sounds as follows. If $f(x): S \rightarrow \mathbb{R}$ convex function defined on the convex set S, then:

- Any local minima is the global one.
- The set of the local minimizer S^{*} is convex.

$$
f(x)=\frac{1}{2}\|A x-b\|_{2}^{2} \rightarrow \min _{x \in \mathbb{R}^{n}}
$$

$$
\begin{aligned}
& \text { 1. } \bar{v} f=A^{\top}(A x-b)=0 \\
& A \in \mathbb{R}^{m \times n} \\
& \nabla^{2} f=A^{\top} A \quad A^{\top} A x-A^{\top} b=0 \\
& A^{\top} A x=A^{\top} b \mid\left(A^{\top} A\right)^{-1} \text {. } \\
& \left(A^{\top} A\right)^{-1} \cdot A^{\top} A X=\left(A^{\top} A\right)^{-1} A^{\top} b \\
& x=\left(A^{\top} A\right)^{-1} \cdot A^{\top} b \\
& \operatorname{det}\left(A^{\top} A\right)>0
\end{aligned}
$$

