
Example 3  

Let  is a random variable with a given probability distribution of , where 
, and . It is said that the probability vector of outcomes of 

belongs to the probabilistic simplex, i.e. 
. Determine if the following sets of 

are convex: 1. , where  stands for expected value of , i.e. 

 1.  1.  

Convex function  
Convex function  
The function , which is defined on the convex set , is called convex , if:

for any  and .
If above inequality holds as strict inequality  and , then function is called strictly
convex 
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Examples  

The sum of the largest  coordinates 

Epigraph  
For the function , defined on , the following set:

is called epigraph of the function 
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Sublevel set  
For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function 
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Criteria of convexity  

First order differential criterion of convexity  

The differentiable function  defined on the convex set  is convex if and only if 
:

Let , then the criterion will become more tractable:
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Second order differential criterion of convexity  

Twice differentiable function  defined on the convex set  is convex if and only if 
:



In other words, :

Connection with epigraph  

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set  

If  - is a convex function defined on the convex set , then for any  sublevel set  is
convex.

The function  defined on the convex set  is closed if and only if for any  sublevel set 
 is closed.

Reduction to a line  

 is convex if and only if  is convex set and the function  defined on 
 is convex for any , which allows to check convexity of the scalar

function in order to establish covexity of the vector function.

Strong convexity  
, defined on the convex set , is called -strongly convex (strogly convex) on , if:

for any  and  for some .
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Criteria of strong convexity  

First order differential criterion of strong convexity  

Differentiable  defined on the convex set  -strongly convex if and only if :

Let , then the criterion will become more tractable:



Second order differential criterion of strong convexity  

Twice differentiable function  defined on the convex set  is called -strongly convex if
and only if :

In other words:

Facts  
 is called (strictly) concave, if the function  - (strictly) convex.

Jensen's inequality for the convex functions:

for  (probability simplex)

For the infinite dimension case:

If the integrals exist and 

If the function  and the set  are convex, then any local minimum  will

be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity  
 

Non-negative sum of the convex functions: 
Composition with affine function  is convex, if  is convex
Pointwise maximum (supremum): If  are convex, then 

 is convex
If  is convex on  for any :  is convex

If  is convex on , then  - is convex with 
Let  and , where . If  and  are convex, and  is
increasing, then  is convex on 

Other forms of convexity  
Log-convex:  is convex; Log convexity implies convexity.
Log-concavity:  concave; not closed under addition!
Exponentially convex: , for 
Operator convex: 
Quasiconvex: 
Pseudoconvex: 



Discrete convexity: ; “convexity + matroid theory.”
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Example 4  

Show, that  is convex and concave.

Example 5  

Show, that , where  - is convex on . 

Example 6  



Show, that  is convex, using first and second order criteria, if . 

Example 7  

Find the set of , where the function  is convex, strictly convex, strongly

convex?









Optimality conditions. KKT  
Background  

Extreme value (Weierstrass) theorem  

Let  be compact set and  continuous function on . So that, the point of the global
minimum of the function  on  exists.

Lagrange multipliers  

Consider simple yet practical case of equality constraints:

The basic idea of Lagrange method implies switch from conditional to unconditional optimization
through increasing the dimensionality of the problem:

General formulations and conditions  

We say that the problem has a solution if the budget set is not empty: , in which the
minimum or the infimum of the given function is achieved.

Optimization on the general set .  

Direction  is a feasible direction at  if small steps along  do not take us
outside of .

Consider a set  and a function . Suppose that  is a point of local
minimum for  over , and further assume that  is continuously differentiable around .

1. Then for every feasible direction  at  it holds that 



2. If, additionally,  is convex then
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Unconstrained optimization  

General case  

Let  be a twice differentiable function.

If  - is a local minimum of , then:

If  at some point  satisfies the following conditions:

then (if necessary condition is also satisfied)  is a local minimum(maximum) of .

Note, that if , i.e. the hessian is positive semidefinite, we cannot be
sure if  is a local minimum (see Peano surface ).

Convex case  

It should be mentioned, that in convex case (i.e.,  is convex) necessary condition becomes
sufficient. Moreover, we can generalize this result on the class of non-differentiable convex
functions.

Let  - convex function, then the point  is the solution of  if and only if:

One more important result for convex constrained case sounds as follows. If  -
convex function defined on the convex set , then:

Any local minima is the global one.
The set of the local minimizers  is convex.




