Convex set Banyknole uноже ceiba. Line segment

Bomyknbe pyrkycun
Suppose x_{1}, x_{2} are two points in \mathbb{R}^{n}. Then the line segment between them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in[0,1]
$$

Convex set
The set S is called convex if for any x_{1}, x_{2} from S the line segment between them also lies in S, ie.

Examples:

- Any affine set
- Ray
- Line segment

Bling k No no one

Related definitions

Convex combination

Let $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the point $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called the convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$ if $\sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0$

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0\right\}
$$

- The set $\operatorname{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S=\boldsymbol{\operatorname { c o n v }}(S)$.

BRO

BRO

BRO

BRO

BRO

BRO

Finding convexity

In practice it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.
- Show that S is derived from simple convex sets using operations that preserve convexity.

(1)By definition

$$
x_{1}, x_{2} \in S, 0 \leq \theta \leq 1 \quad \rightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in S
$$

Preserving convexity

(3)The linear combination of convex sets is convex

Let there be 2 convex sets S_{x}, S_{y}, let the set $S=\left\{s \mid s=c_{1} x+c_{2} y, x \in S_{x}, y \in S_{y}, c_{1}, c_{2} \in \mathbb{R}\right\}$
Take two points from S : $s_{1}=c_{1} x_{1}+c_{2} y_{1}, s_{2}=c_{1} x_{2}+c_{2} y_{2}$ and prove that the segment between

$$
\begin{gathered}
\theta s_{1}+(1-\theta) s_{2} \\
\theta\left(c_{1} x_{1}+c_{2} y_{1}\right)+(1-\theta)\left(c_{1} x_{2}+c_{2} y_{2}\right) \\
c_{1}\left(\theta x_{1}+(1-\theta) x_{2}\right)+c_{2}\left(\theta y_{1}+(1-\theta) y_{2}\right) \\
c_{1} x+c_{2} y \in S
\end{gathered}
$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \rightarrow f(S)=\{f(x) \mid x \in S\} \text { convex } \quad(f(x)=\mathbf{A} x+\mathbf{b})
$$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\ldots+x_{m} A_{m} \preceq B\right\}$ Here $A_{i}, B \in \mathbf{S}^{p}$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$
S \subseteq \mathbb{R}^{m} \text { convex } \rightarrow f^{-1}(S)=\left\{x \in \mathbb{R}^{n} \mid f(x) \in S\right\} \text { convex }(f(x)=\mathbf{A} x+\mathbf{b})
$$

Example 1

${ }_{4}{ }^{5}$

Prove, that ball in \mathbb{R}^{n} (i.e. the following set $\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\| \leq r\right\}$) - is convex.

1) Bobs bier $\begin{array}{ll}x_{1} \in S \quad & \left\|x_{1}-x_{c}\right\| \leq r \\ x_{2} \in S \quad\left\|x_{2}-x_{c}\right\| \leq r\end{array}$
2) Посраи отрезок: $x=\theta x_{1}+(1-\theta) x_{2}$
3) Mpobepir, no $x \in S \quad\left\|x-x_{c}\right\| \leqslant r \quad \theta+1-\theta=1$
$\left\|\theta x_{1}+(1-\theta) x_{2}-x_{c}\right\| \leqslant r \rightarrow\left\|\theta x_{1}+(1-\theta) x_{2}-\theta x_{c}-(1-\theta) x_{c}\right\|=$

Which of the sets are convex: 1. Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$ 1. Rectangle,
$\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$ 1. Keen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$ 1. A set of points closer to a given point than a given set that does not contain a point,
$\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\} 1$. A set of points, which are closer to one set than another, $\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^{n}\right\}$ 1. A set of points,
$\left\{x \in \mathbb{R}^{n} \mid x+X \subseteq S\right\}$, where $S \subseteq \mathbb{R}^{n}$ is convex and $X \subseteq \mathbb{R}^{n}$ is arbitrary. 1. A set of points whose distance to a given point does not exceed a certain part of the distance to another given point is $\left\{x \in \mathbb{R}^{n} \mid\|x-a\|_{2} \leq \theta\|x b\|_{2}, a, b \in \mathbb{R}^{n}, 0 \leq 1\right\}$
$M_{\text {ножесво рошенй систеия лин. ур-иі: }}$

$$
S=\left\{x \in \mathbb{R}^{?} \mid A x=b\right\} \quad S-\operatorname{son}
$$

1.

$$
\begin{array}{ll}
x_{1} \in S & A x_{1}=b \\
x_{2} \in S & A x_{2}=b
\end{array}
$$

$$
A \in \mathbb{R}^{m \times}
$$

$m<n$
2.

$$
\begin{array}{r}
x=a x_{1}+(1-\theta) x_{2} \quad 0 \leqslant \theta \leqslant 1 \\
x \in S(?) \quad A x=b \\
A\left(\theta x_{1}+(1-\theta) x_{2}\right) \stackrel{?}{=} b \\
\theta A x_{1}+(1-\theta) A x_{2} \stackrel{?}{=} b \\
\theta b+(1-\theta) b \stackrel{?}{=} b \\
b=b
\end{array}
$$

MH-bo cumल. non. noilp maipuy
S Banyikio!

$$
S=\left\{X \in \mathbb{R}^{n \times n} \mid \forall y \in \mathbb{R}^{n}: y^{\top} X y \geqslant 0\right\}
$$

1. $X_{1} \in S$

$$
y_{1}^{\top} X_{1} y_{1} \geqslant 0 \quad \forall y_{1}=y
$$

$$
\text { 1. } x_{2} \in S \quad x_{2}^{\top} x_{2} y_{2} \geqslant 0 \quad \forall y_{2}=y
$$

$$
\text { 3. } X=\theta X_{1}+(1-\theta) X_{2} \quad \forall y=y_{1}=y_{2}: y^{\top} X y \geqslant 0 \text { ? }
$$

$$
y^{\top}\left[\theta X_{1}+(-\theta) X_{2}\right] y={\underset{0}{v} y_{1} y_{0} X_{1} y+\underbrace{(-\theta)}_{0} y_{V_{0}^{\top}}^{y_{2}} y}_{V_{0}}^{v}
$$

Bepostностныи eurunneke
Bulnykno!

$$
S=\left\{p \in \mathbb{R}^{n} \frac{p^{1} \geq 0}{p_{i} \geq 0}, 1^{\top} p=1\right\}
$$

$$
S_{A}=\left\{p \in \mathbb{R}^{n} \mid P \geq 0\right\}
$$

A. gokazä̆ bungnnocto

B. gokezato bungen nocts

$$
\begin{aligned}
& S_{B}=\left\{p \in \mathbb{R}^{n} \mid 1^{\top} p=1\right\} \quad 0 \leq \theta \leqslant 1 \\
& 1^{\top} p_{1}=1 \quad p=\theta p_{1}+(1-\theta) p_{2} \\
& 1^{\top} p_{2}=1 \quad\left(\quad 1^{\top} p\right) \stackrel{?}{=} \quad p \in S_{B} \\
& 1^{\top}\left(\theta p_{1}+(1-\theta) p_{2}\right)= \\
& =\theta 1^{\top} P_{1}+(1-\theta) 1^{\top} p_{2}= \\
& \\
& =\theta \cdot 1+(1-\theta) \cdot 1=1
\end{aligned}
$$

