Convex set

Выпуклые можества.

Bunykable Qynkyun

Line segment

Suppose x_1, x_2 are two points in \mathbb{R}^n . Then the line segment between them is defined as follows:

 $x= heta x_1+(1- heta)x_2, \ heta\in[0,1]$

Convex set

The set S is called **convex** if for any x_1, x_2 from S the line segment between them also lies in S, MH-60 S- BOINYKNO UTO NOKO TOLOT, TOLAC i.e.

Related definitions

Convex combination

Let $x_1, x_2, \ldots, x_k \in S$, then the point $heta_1 x_1 + heta_2 x_2 + \ldots + heta_k x_k$ is called the convex combination of points x_1, x_2, \ldots, x_k if $\sum\limits_{i=1}^k heta_i = 1, \; heta_i \geq 0$

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$\mathbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \sum_{i=1}^k heta_i = 1, \; heta_i \geq 0
ight\}$$

- The set $\mathbf{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S = \mathbf{conv}(S)$.

Finding convexity

In practice it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.
- Show that *S* is derived from simple convex sets using operations that preserve convexity.

(By definition

 $x_1,x_2\in S,\ 0\leq heta\leq 1 \ o \ heta x_1+(1- heta)x_2\in S$

Preserving convexity

3)The linear combination of convex sets is convex

Let there be 2 convex sets S_x,S_y , let the set $S=\{s\mid s=c_1x+c_2y,\;x\in S_x,\;y\in S_y,\;c_1,c_2\in\mathbb{R}\}$

Take two points from $S: s_1 = c_1x_1 + c_2y_1, s_2 = c_1x_2 + c_2y_2$ and prove that the segment between them $s_1 + (1 - theta)s_2$, theta in [0,1] also belongs to SS

$$egin{aligned} & heta s_1 + (1- heta) s_2 \ & heta (c_1 x_1 + c_2 y_1) + (1- heta) (c_1 x_2 + c_2 y_2) \ & heta (heta x_1 + (1- heta) x_2) + c_2 (heta y_1 + (1- heta) y_2) \end{aligned}$$

$$c_1x+c_2y\in S$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex

 $S\subseteq \mathbb{R}^n ext{ convex } o ext{ } f(S) = \{f(x) \mid x\in S\} ext{ convex } (f(x) = \mathbf{A}x + \mathbf{b})$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\{x \mid x_1A_1 + \ldots + x_mA_m \preceq B\}$ Here $A_i, B \in \mathbf{S}^p$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$S\subseteq \mathbb{R}^m ext{ convex } o \ f^{-1}(S) = \{x\in \mathbb{R}^n \mid f(x)\in S\} ext{ convex } (f(x)=\mathbf{A}x+\mathbf{b})$$

Example 1

Prove, that ball in \mathbb{R}^n (i.e. the following set $\{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\| \leq r\}$) - is convex.

Permatrice:
1) Boysmein
$$X_1 \in S$$
 $||X_1 - X_c|| \leq r$
2) Roopan orpezok: $X = \Theta X_1 + (1 - \Theta) X_2$
3) Roobeping, the $X \in S$ $||X - X_c|| \leq r$ $\Theta + 1 - \Theta = 1$
 $||\Theta X_1 + (1 - \Theta) X_2 - X_c|| \leq r$ $||\Theta X_1 + (1 - \Theta) X_2 - \Theta X_c - (1 - \Theta) X_c|| =$
 $= ||\Theta(X_1 - X_c) + (1 - \Theta) (X_2 - X_c)|| \leq \Theta ||X_1 - X_c|| + (1 - \Theta) ||X_2 - X_c|| =$
 $\forall \Theta \cdot 1$
Example 2 $\leq \Theta r + (1 - \Theta) r \leq r$ $\Rightarrow X \in S$

Which of the sets are convex: 1. Stripe, $\{x \in \mathbb{R}^n \mid \alpha \leq a^\top x \leq \beta\}$ 1. Rectangle, $\{x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = \overline{1, n}\}$ 1. Kleen, $\{x \in \mathbb{R}^n \mid a_1^\top x \leq b_1, a_2^\top x \leq b_2\}$ 1. A set of points closer to a given point than a given set that does not contain a point, $\{x \in \mathbb{R}^n \mid \|x - x_0\|_2 \leq \|x - y\|_2, \forall y \in S \subseteq \mathbb{R}^n\}$ 1. A set of points, which are closer to one set than another, $\{x \in \mathbb{R}^n \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^n\}$ 1. A set of points, $\{x \in \mathbb{R}^n \mid x + X \subseteq S\}$, where $S \subseteq \mathbb{R}^n$ is convex and $X \subseteq \mathbb{R}^n$ is arbitrary. 1. A set of points whose distance to a given point does not exceed a certain part of the distance to another given point is $\{x \in \mathbb{R}^n \mid \|x - a\|_2 \leq \theta \|xb\|_2, a, b \in \mathbb{R}^n, 0 \leq 1\}$

BPIUAKUOj Beposthoctheir cumnnerc | p>o, 1 p=1 S = SpeR $2 p_i = 1$ p: ≥0 A. goka zatib buny Knocto $S_A = \int p \in \mathbb{R}^n \left(P \ge 0 \right)$ B. GOKAZOTO BUNJUK NOCTO $S_B = \int p \in \mathbb{R}^n \left[1^T p = 1 \right]$ p= 0 P + (-0) P2 1"P, (IP) = 71 (UP+ (1-0)P) 6 1 P1 + (1-4) 1 P2 = = H. + (1-0) · 1 (=