\odot Useful definitions and notations
We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^{n}, while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$.

Basic linear algebra background

$$
x \in \mathbb{R}^{n}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)_{n \times 1}
$$

The standard inner product between vectors x and y from \mathbb{R}^{n} is given crop

$$
\begin{array}{|c}
\langle x, y\rangle=\begin{array}{l}
x^{\top} y= \\
1 \times n \quad n \times 1
\end{array} \\
i=1
\end{array} x_{i} y_{i}=y^{\top} x=\langle y, x\rangle\binom{ 1}{2}
$$

$$
\begin{gathered}
1 \cdot(-3)+2 \cdot 5= \\
=7
\end{gathered}
$$

The standard inner product between matrices X and Y from $\mathbb{R}^{m \times n}$ is. given by
Here x_{i} and y_{i} are the scalar i-th components of corresponding vectors.

$$
\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

Don't forget about the cyclic property of a trace for a square matrices A, B, C, D :

$$
\operatorname{tr}(A B C D)=\operatorname{tr}(D A B C)=\operatorname{tr}(C D A B)=\operatorname{tr}(B C D A)
$$

The largest and smallest eigenvalues satisfy

$$
\lambda_{\min }(A)=\inf _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}, \quad \lambda_{\max }(A)=\sup _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}
$$

and consequently $\forall x \in \mathbb{R}^{n}$ (Rayleigh quotient):

$$
\operatorname{tr}\left(I_{n}\right)=n
$$

The determinant and trace can be expressed in terms of the eigenvalues

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{3} 2 \times 3
$$

2

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i},
$$

n
coders.
 CNEKTP MATPULGGI
eam $A \in \mathbb{S}_{++}^{n}, T 0$
$A \succ(\succeq) 0$.

$$
\text { bee } \lambda(A)>0
$$

The condition number of a nonsingular matrix is defined as $x \in \mathbb{R}^{2}\binom{x_{1}}{x_{2}} \quad x^{\top} A x$

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
x_{1} & 1+0 \cdot x_{2} \\
0 \cdot x_{1}+2 \cdot x_{2}
\end{array}\right)=
\end{aligned}
$$

Matrix and vector multiplication

Let A be a matrix of size $m \times n_{n}$, and B be a matrix of size $n \times p$, and let the product $A B$ be:

$$
C=A B
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{x_{1}}{2 x_{2}}= \\
& \quad=x_{1}^{2}+2 x_{2}^{2} \geq 0
\end{aligned}
$$

then C is a $\left.m^{n}\right)<p$ matrix with element (i, j) given by:

$$
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

$$
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{x_{1}+x_{2}}{x_{1}+x_{2}}=\begin{aligned}
& x_{1}^{2}+x_{1} x_{2}+x_{1} x_{2}+x_{2}^{2}= \\
& =x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
\end{aligned}
$$

 the product:

$$
z=A x
$$

$m \times 1 \quad m \times n n \times 1$
is given by:

$$
z_{i}=\sum_{k=1}^{n} a_{i k} x_{k}
$$

Finally, just to remind:

$e^{A+B} \neq e^{A} e^{B}$ (but if A and B are commuting matrices, which means that $\left.A B=B A, e^{A+B}=e^{A} e^{B}\right)$
$\left.\underset{n \times 1}{\langle x,}, A_{n \times 1} y\right\rangle_{m \times 1}=\underset{m \times n}{ }=\left\langle A_{n \times 1}^{\top} x, y\right\rangle_{m \times 1} \quad A^{\top^{\top}}=A$
Gradient $\left(A^{\top} x\right)^{\top} y=$
$x^{\top} A y$
$\left(A^{\top} x\right)^{\top} y=$
Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$
then vector, which contains all first order partial derivatives:

$$
\nabla f(x)=\frac{d f}{d x}=\begin{gathered}
\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
\end{gathered}
$$

named gradient of $f(x)$. This vector indicates the direction of steepest ascent Thus, vector $-\nabla f(x)$ means the direction of the steepest descent of the function in the point. Moreover, the gradient vector is always orthogonal to the contour line in the point.

Hessian Teecuary

Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$, then matrix, containing all the second order partial derivatives:

$$
\left.f^{\prime \prime}(x)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right)
$$

In fact, Hessian could be a tensor in such a way: $\left(f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$ is just Sd tensor, every slice is just hessian of corresponding scalar function $\left(H\left(f_{1}(x)\right), H\left(f_{2}(x)\right), \ldots, H\left(f_{m}(x)\right)\right)$.

Jacobian
The extension of the gradient of multidimensional $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the following matrix:

$$
\begin{aligned}
& f(x)=2 \cdot x \\
& x \in \mathbb{R}^{n} \quad f^{\prime}(x)=\frac{d f}{d x^{T}}= \\
& \left(\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right) \\
& \begin{array}{llll}
\frac{\partial x_{1}}{\partial x_{1}} & \frac{\partial x_{2}}{\partial x_{2}} & \cdots & \frac{\partial x_{n}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}}
\end{array} \quad \quad \begin{array}{l}
\text { a }
\end{array} \\
& f(x)=[a, x] \\
& \text { Summary } \\
& \text { - } \quad \vdots \quad \vdots
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\underset{m \times n}{A} \cdot x_{n \times 1} \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

Skosuar

$$
f(x): X \rightarrow Y ; \quad \frac{\partial f(x)}{\partial x} \in G
$$

Naive approach

The basic idea of naive approach is to reduce matrix/vector derivatives to the wellknown scalar derivatives.

Matrix notation of a function

$$
f(x)=c^{\top} x
$$

Scalar notation of a function

Matrix notation of a gradient

$$
\nabla f(x)=c
$$

\uparrow

$$
\frac{\partial\left(c_{1} x_{1}+c_{2} x_{2}+\ldots-1 c_{n} x_{n}\right)}{\partial x_{k}}=\underbrace{i=1}_{\text {Simple derivative }}
$$

$$
=\frac{\partial\left(C_{k} x_{k}\right)}{\partial x_{k}}=C_{k}
$$

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial\left(\sum_{i=1}^{n} c_{i} x_{i}\right)}{\partial x_{k}}
$$

One of the most important practical tricks here is to separate indices of sum (i) and
partial derivatives (k). Ignoring this simple rule tends to produce mistakes.

Differential approach

The guru approach implies formulating a set of simple rules, which allows you to calculate derivatives just like in a scalar pase. It might be convenient to use the differential notation here. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
f=c^{\top} x
$$

$$
d f=f(x+d x)-f(x) \quad f(x)=c^{\top} x .
$$

Differentials

$$
d f=c^{\top} x+c^{2} d x-c^{\top} x=c^{\top} d x=\left\langle c c^{T} d x\right\rangle
$$

After obtaining the differential notation of $d f$ we can retrieve the gradient using
following formula:

1. Notzinats af
2. Megegraburo 6

$$
d f(x)=\langle\nabla f(x), d x\rangle
$$

Then, if we have differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" $d x$ as the constant $d x_{1}$, then calculate $d(d f)=d^{2} f(x)$

$$
d^{2} f(x)=\left\langle\nabla^{2} f(x) d x_{1}, d x_{2}\right\rangle=\left\langle H_{f}(x) d x_{1}, d x_{2}\right\rangle
$$

Properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).

$$
\begin{aligned}
& d A=0 \\
& d(\alpha X)=\alpha(d X) \\
& d(A X B)=A(d X) B \\
& d(X+Y)=d X+d Y \\
& d\left(X^{\top}\right)=(d X)^{\top} \\
& d(X Y)=(d X) Y+X(d Y) \\
& d\langle X, Y\rangle=\langle d X, Y\rangle+\langle X, d Y\rangle \\
& d\left(\frac{X}{\phi}\right)=\frac{\phi d X-(d \phi) X}{\phi^{2}} \\
& d(\operatorname{det} X)=\operatorname{det} X\left\langle X^{-\top}, d X\right\rangle \\
& d(\operatorname{tr} X)=\langle I, d X\rangle \\
& d f(g(x))=\frac{d f}{d g} \cdot d g(x) \\
& H=(J(\nabla f))^{T}
\end{aligned}
$$

$d\left(X^{-1}\right)=-X^{-1}(d X) X^{-1}$

References

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A.
Mathematical background.
Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.
Matrix decompositions Cheat Sheet.
Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
Determinant derivative

Mpumep: $\quad f(x)=\ln \langle x, A x\rangle$

$$
x \in \mathbb{R}^{n} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& \text { 3agaro: } d f=\text { ? } \nabla f=\text { ? } \\
& \text { Pememue: } \\
& \text { 1. } d f=d(\ln \langle x, A x\rangle)=\frac{d(\langle x, A x\rangle)}{\langle x, A x\rangle}=\begin{array}{l}
(\ln f(x))^{2}=\frac{f(x)}{f(x)} \\
d \ln f(x)=\frac{d f(x)}{f(x)} \\
d f=\langle\ldots, d x
\end{array} \\
& =\frac{\langle d x, A x\rangle+\langle x, d(A x)\rangle}{\langle x, A x\rangle}=\frac{\langle A x, d x\rangle+\langle x, A d x\rangle}{\langle x, A x\rangle}= \\
& \begin{array}{c}
=\frac{\langle A x, d x\rangle+\left\langle A^{\top} x, d x\right\rangle}{\langle x, A x\rangle}=\frac{\left\langle\left(A+A^{\top}\right) x, d x\right\rangle}{\langle x, A x\rangle} \\
\nabla f=\frac{\left(A+A^{\top}\right) x}{\langle x, A x\rangle}
\end{array}
\end{aligned}
$$

Pemumb:

$$
f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x+c
$$

$x \in \mathbb{R}^{n} ; A \in \mathbb{R}^{n \times n} ; b \in \mathbb{R}^{n} ; c \in \mathbb{R}$
Haútu $d f=$? $\quad \nabla f=$?

$$
\begin{gathered}
f=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle+c \\
x^{\top} y=\langle x, y\rangle \\
\langle d b=0, x\rangle=0
\end{gathered}
$$

$$
\begin{aligned}
& d\left(\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle+c\right)= \\
& =\frac{1}{2} d(\langle x, A x\rangle)-d(\langle b, x\rangle)+d c^{=}= \\
& =\frac{1}{2}(\langle d x, A x\rangle+\langle x, A d x\rangle)-\langle b, d x\rangle= \\
& =\frac{1}{2}\left(\langle A x, d x\rangle+\left\langle A^{\top} x, d x\right\rangle\right)-\langle b, d x\rangle= \\
& =\left\langle\frac{1}{2}\left(A+A^{\top}\right) x-b, d x\right\rangle \\
& \Rightarrow \quad \nabla f=\frac{1}{2}\left(A+A^{7}\right) x-b
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\operatorname{tr}(X)=\operatorname{tr}\left(I^{\top} \cdot X\right)=\langle I, x\rangle \\
& d f=d(\langle I, X\rangle)=\langle I, d X\rangle \quad \nabla f=I \\
& \cdots\langle d \bar{I}, X\rangle+\langle I, d X\rangle \\
& f(x)=\operatorname{tr} x= \\
& =\sum_{i=1}^{n} x_{i i} \\
& \frac{\partial f}{\partial x_{x p}}=\frac{\left.\partial \sum_{i=1}^{n} x_{i i}\right)}{\partial x_{k p}} \prod_{\lambda \text { unare }}^{k=P=i} 1
\end{aligned}
$$

$$
\begin{aligned}
& f(X)=\langle S, X\rangle-\ln \operatorname{det} X \quad S=\text { comt } \\
& X \in \mathbb{R}^{n \times x} \\
& d(\operatorname{det} X)=\operatorname{det} X \cdot\left\langle X^{-\top}, d X\right\rangle \quad \nabla f=\text { ? } \\
& \text { 1. } d f=\text { ? } \\
& d f=\langle S, d x\rangle-\frac{d(\operatorname{det} x)}{\operatorname{det} x}= \\
& \operatorname{det} x_{\neq 0} \\
& =\langle S, d x\rangle-\frac{\operatorname{det} x \cdot\left\langle x^{-7}, d x\right\rangle}{\operatorname{det} x} d S=0 \\
& =\left\langle S-X^{-\top}, d X\right\rangle \\
& \nabla f=S-X^{-T} \\
& X^{-\top}=\left(X^{-1}\right)^{\top}=\left(X^{\top}\right)^{-1}
\end{aligned}
$$

Idea

DIFFERENTIATION

	$\uparrow_{\text {AUTABLE }}^{\text {STATIC }}$
SYMBOLIC	
SLOW	FAST
Numerical	MANUAL (impractical)
	Unstable

Automatic differentiation is a scheme, that allows you to compute a value of gradient of function with a cost of computing function itself only twice.

Chain rule

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule

Suppose, we have the following functions $R: \mathbb{R} \rightarrow \mathbb{R}, L: \mathbb{R} \rightarrow \mathbb{R}$ and $W \in \mathbb{R}$. Then

$$
\frac{\partial R}{\partial W}=\frac{\partial R}{\partial L} \frac{\partial L}{\partial W}
$$

Multivariate chain rule

The simplest example:

$$
\frac{\partial}{\partial t} f\left(x_{1}(t), x_{2}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}
$$

Now, we'll consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\frac{\partial}{\partial t} f\left(x_{1}(t), \ldots, x_{n}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t}
$$

But if we will add another dimension $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, than the j-th output of f will be:

$$
\frac{\partial}{\partial t} f_{j}\left(x_{1}(t), \ldots, x_{n}(t)\right)=\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}} \frac{\partial x_{i}}{\partial t}=\sum_{i=1}^{n} J_{j i} \frac{\partial x_{i}}{\partial t}
$$

where matrix $J \in \mathbb{R}^{m \times n}$ is the jacobian of the f. Hence, we could write it in a vector way:

$$
\frac{\partial f}{\partial t}=J \frac{\partial x}{\partial t} \quad \Longleftrightarrow \quad\left(\frac{\partial f}{\partial t}\right)^{\top}=\left(\frac{\partial x}{\partial t}\right)^{\top} J^{\top}
$$

Backpropagation
The whole idea came from the applying chain rule to the computation graph of primitive operations

$$
L=L(y(z(w, x, b)), t)
$$

FORWARD PASS (COMPUTE LOSS)

All frameworks for automatic differentiation construct (implicitly or explicitly) computation graph. In deep learning we typically want to compute the derivatives of
the loss function L w.r.t. each intermediate parameters in order to tune them via gradient descent. For this purpose it is convenient to use the following notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}
$$

Let v_{1}, \ldots, v_{N} be a topological ordering of the computation graph (i.e. parents come before children). v_{N} denotes the variable we're trying to compute derivatives of (e.g. loss).

Forward pass:

For $i=1, \ldots, N$:
Compute v_{i} as a function of its parents.

Backward pass:

$\overline{v_{N}}=1$
For $i=N-1, \ldots, 1$:
Compute derivatives $\overline{v_{i}}=\sum_{j \in \operatorname{Children}\left(v_{i}\right)} \overline{v_{j}} \frac{\partial v_{j}}{\partial v_{i}}$
Note, that $\overline{v_{j}}$ term is coming from the children of $\overline{v_{i}}$, while $\frac{\partial v_{j}}{\partial v_{i}}$ is already precomputed effectively.

Forward pass
Backward pass
$z=w x+b$
$\overline{\mathcal{L}}=1$
$y=\sigma(z)$
$L=\frac{1}{2}(y-t)^{2}$
$\bar{R}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d R}=\overline{\mathcal{L}} \lambda$
$\bar{z}=\bar{y} \frac{d y}{d z}=\bar{y} \sigma^{\prime}(z)$
$\bar{L}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d L}=\overline{\mathcal{L}}$
$\bar{w}=\bar{z} \frac{d z}{d w}+\bar{R} \frac{d R}{d w}=\bar{z} x+\bar{R} w$
$R=\frac{1}{2} w^{2}$
$\bar{y}=\bar{L} \frac{d L}{d y}=\bar{L}(y-t)$
$\bar{b}=\bar{z} \frac{d z}{d b}=\bar{z}$
$\mathcal{L}=L+\lambda R$
$\bar{x}=\bar{z} \frac{d z}{d x}=\bar{z} w$

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly instead.

Example: element-wise exponent

$$
y=\exp (z) \quad J=\operatorname{diag}(\exp (z)) \quad \bar{z}=\bar{y} J
$$

See the examples of Vector-Jacobian Products from autodidact library:

lambda

Zambda

lambda
lambda
lambda
lambda
lambda
lambda

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products, which is essential for second order optimization or conjugate gradient methods. For a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with continuous second derivatives (so that the Hessian matrix is symmetric), the Hessian at a point $x \in \mathbb{R}^{n}$ is written as $\partial^{2} f(x)$. A Hessian-vector product function is then able to evaluate

$$
v \mapsto \partial^{2} f(x) \cdot v
$$

for any vector $v \in \mathbb{R}^{n}$.

The trick is not to instantiate the full Hessian matrix: if n is large, perhaps in the millions or billions in the context of neural networks, then that might be impossible to store. Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an efficient Hessian-vector product function. We just have to use the identity

$$
\partial^{2} f(x) v=\partial[x \mapsto \partial f(x) \cdot v]=\partial g(x),
$$

where $g(x)=\partial f(x) \cdot v$ is a new vector-valued function that dots the gradient of f at x with the vector v. Notice that we're only ever differentiating scalar-valued functions of vector-valued arguments, which is exactly where we know grad is efficient.

Code

ce Open in Colab

Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6
CSC321 Lecture 10
Why you should understand backpropagation :)
JAX autodiff cookbook

Matrix calculus

Find the derivatives of $f(x)=A x, \quad \nabla_{x} f(x)=?, \nabla_{A} f(x)=$?
Find $\nabla f(x)$, if $f(x)=c^{T} x$.
Find $\nabla f(x)$, if $f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$.
Find $\nabla f(x), f^{\prime \prime}(x)$, if $f(x)=-e^{-x^{T} x}$.
Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}$.
Find $\nabla f(x)$, if $f(x)=\|x\|_{2}, x \in \mathbb{R}^{p} \backslash\{0\}$.
Find $\nabla f(x)$, if $f(x)=\|A x\|_{2}, x \in \mathbb{R}^{p} \backslash\{0\}$.
Find $\nabla f(x), f^{\prime \prime}(x)$, if $f(x)=\frac{-1}{1+x^{\top} x}$.
Calculate $d f(x)$ and $\nabla f(x)$ for the function $f(x)=\log \left(x^{\top} \mathrm{A} x\right)$.
Find $f^{\prime}(X)$, if $f(X)=\operatorname{det} X$
Note: here under $f^{\prime}(X)$ assumes first order approximation of $f(X)$ using Taylor series: $f(X+\Delta X) \approx f(X)+\operatorname{tr}\left(f^{\prime}(X)^{\top} \Delta X\right)$

Find $f^{\prime \prime}(X)$, if $f(X)=\log \operatorname{det} X$
Note: here under $f^{\prime \prime}(X)$ assumes second order approximation of $f(X)$ using Taylor series: $f(X+\Delta X) \approx f(X)+\operatorname{tr}\left(f^{\prime}(X)^{\top} \Delta X\right)+\frac{1}{2} \operatorname{tr}\left(\Delta X^{\top} f^{\prime \prime}(X) \Delta X\right)$

Find gradient and hessian of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, if:

$$
f(x)=\log \sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right), \quad a_{1}, \ldots, a_{m} \in \mathbb{R}^{n} ; \quad b_{1}, \ldots, b_{m} \in \mathbb{R}
$$

What is the gradient, Jacobian, Hessian? Is there any connection between those three definitions?
Calculate: $\frac{\partial}{\partial X} \sum \operatorname{eig}(X), \frac{\partial}{\partial X} \Pi \operatorname{eig}(X), \frac{\partial}{\partial X} \operatorname{tr}(X), \frac{\partial}{\partial X} \operatorname{det}(X)$
Calculate the Frobenious norm derivative: $\frac{\partial}{\partial X}\|X\|_{F}^{2}$
Calculate the gradient of the softmax regression $\nabla_{\theta} L$ in binary case ($K=2$) n dimensional objects:

$$
\begin{aligned}
& {\left[\begin{array}{l}
P(y=1 \mid x ; \theta) \\
P(y=2 \mid x ; \theta)
\end{array} \quad\left[\begin{array}{l}
\exp \left(\theta^{(1) \top} x\right) \\
\exp \left(\theta^{(2) \top} x\right)
\end{array}\right\rceil\right.} \\
& \left.h_{\theta}(x)=\begin{array}{c}
P(y) \\
\vdots \\
P(y=K \mid x ; \theta)
\end{array} \quad=\frac{1}{\sum_{j=1}^{K} \exp \left(\theta^{(j) \top} x\right)} \quad \begin{array}{c}
\vdots \\
\exp \left(\theta^{(K) \top} x\right)
\end{array}\right] \\
& L(\theta)=-\left[\sum_{i=1}^{n}\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)+y^{(i)} \log h_{\theta}\left(x^{(i)}\right)\right]
\end{aligned}
$$

Find $\nabla f(X)$, if $f(X)=\operatorname{tr} A X$
Find $\nabla f(X)$, if $f(X)=\langle S, X\rangle-\log \operatorname{det} X$
Find $\nabla f(X)$, if $f(X)=\ln \langle A x, x\rangle, A \in \mathbb{S}_{++}^{\mathrm{n}}$
Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if

$$
f(x)=\ln (1+\exp \langle a, x\rangle)
$$

Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\frac{1}{3}\|x\|_{2}^{3}$
Calculate $\nabla f(X)$, if $f(X)=\|A X-B\|_{F}, X \in \mathbb{R}^{k \times n}, A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{m \times n}$ Calculate the derivatives of the loss function with respect to parameters $\frac{\partial L}{\partial W}, \frac{\partial L}{\partial b}$ for the single object x_{i} (or, $n=1$)

Learning

Object

$x_{i} \in \mathbb{R}^{p}, y_{i} \in \mathbb{R}^{K}$$\rightarrow$| Model |
| :---: |
| $W \in \mathbb{R}^{K \times p}, b \in \mathbb{R}^{K}$ |\rightarrow| Prediction |
| :---: |
| $\hat{y}_{i}=W x_{i}+b$ |
| $L(x, y, W, b)$ | | $\frac{1}{n} \sum_{i=1}^{n}\left\\|y_{i}-\hat{y}_{i}\right\\|_{2}^{2} \rightarrow \min _{W, b}$ |
| :---: |

Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\langle x, x\rangle^{\langle x, x\rangle}, x \in \mathbb{R}^{p} \backslash\{0\}$ Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\frac{\langle A x, x\rangle}{\|x\|_{2}^{2}}, x \in \mathbb{R}^{p} \backslash\{0\}, A \in \mathbb{S}^{n}$
Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\frac{1}{2}\left\|A-x x^{\top}\right\|_{F}^{2}, A \in \mathbb{S}^{n}$ Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if $f(x)=\left\|x x^{\top}\right\|_{2}$
Find the gradient $\nabla f(x)$ and hessian $f^{\prime \prime}(x)$, if
$f(x)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(a_{i}^{\top} x\right)\right)+\frac{\mu}{2}\|x\|_{2}^{2}, a_{i} \in \mathbb{R}^{n}, \mu>0$.
Match functions with their gradients:

$$
f(\mathrm{X})=\operatorname{Tr} \mathrm{X}
$$

$f(\mathrm{X})=\operatorname{Tr}^{-1}$

- $f(\mathrm{X})=\operatorname{det} \mathrm{X}$
$\square(\mathrm{X})=\ln \operatorname{det} \mathrm{X}$
- $\nabla f(\mathrm{X})=\mathrm{X}^{-1}$
b $\nabla f(\mathrm{X})=\mathrm{I}$
$\nabla f(\mathrm{X})=\operatorname{det}(\mathrm{X}) \cdot\left(\mathrm{X}^{-1}\right)^{\top}$
d $\nabla f(\mathrm{X})=-\left(\mathrm{X}^{-2}\right)^{\top}$
Calculate the first and the second derivative of the following function $f: S \rightarrow \mathbb{R}$ $f(t)=\operatorname{det}\left(A-t I_{n}\right)$, where $A \in \mathbb{R}^{n \times n}, S:=\left\{t \in \mathbb{R}: \operatorname{det}\left(A-t I_{n}\right) \neq 0\right\}$.
Find the gradient $\nabla f(x)$, if $f(x)=\operatorname{tr}\left(A X^{2} B X^{-\top}\right)$.

Automatic differentiation

Calculate the gradient of a Taylor series of a $\cos (x)$ using autograd library:

```
import autograd:numpy as np # Thinly-wrapped version of Numpy
from autograd import
def taylor_cosine(x): # Taylor approximation to cosine function
    # Your np code here
    return
```

In the following code for the gradient descent for linear regression change the manual gradient computation to the PyTorch/jax autograd way. Compare those two approaches in time.

In order to do this, set the tolerance rate for the function value $\varepsilon=10^{-9}$. Compare the total time required to achieve the specified value of the function for analytical and automatic differentiation. Perform measurements for different values of n from np. logspace(1,4).

For each n value carry out at least 3 runs.

```
import numpy as
# Compute every step manually
# Linear regression
# f = w * x
# here : f = 2 * x
    1, 2, 3, 4
    2, 4, 6, 8
    = 0.0
# model output
def forward
```


loss = MSE

def loss
return ((y_pred - y)**2

J = MSE = 1/N * (w*x - y)**2

dJ/dw = 1/N * 2x(w*x - y)

def gradient
return np.dot(2*x, y_pred - y).mean()
print(f'Prediction before training: f(5) = {forward(5): 3f}'

Training

learning_rate = 0.01
n_iters = 20
for epoch in range
\# predict = forward pass
\# loss
l = loss(Y, y_pred)
\# calculate gradients
dW = gradient (X, Y, y_pred)
\# update weights
w -= learning_rate * dw
if epoch % 2 == 0
print(f'epoch {epoch+1}: W = {w:3}, loss = {L: 8}}'
print(f'Prediction after training: f(5) = {forward(5): 3 3'')

```

3 Calculate the 4th derivative of hyperbolic tangent function using Jax autograd.
4 Compare analytic and autograd (with any framework) approach for the hessian of:
\[
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
\]

Compare analytic and autograd (with any framework) approach for the gradient of:
\[
f(X)=\operatorname{tr}(A X B)
\]

Compare analytic and autograd (with any framework) approach for the gradient and hessian of:
\[
f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}
\]

Compare analytic and autograd (with any framework) approach for the gradient and hessian of:
\[
f(x)=\ln (1+\exp \langle a, x\rangle)
\]

\section*{Materials}

HIPS autograd
PyTorch autograd
Jax Autodiff cookbook```

