
Theory / Matrix calculus

We will treat all vectors as column vectors by default. The space of real vectors of

length is denoted by , while the space of real-valued matrices is denoted

by .

The standard inner product between vectors and from is given by

Here and are the scalar -th components of corresponding vectors.

The standard inner product between matrices and from is given by

The determinant and trace can be expressed in terms of the eigenvalues

Don’t forget about the cyclic property of a trace for a square matrices :

The largest and smallest eigenvalues satisfy

and consequently (Rayleigh quotient):

A matrix (set of square symmetric matrices of dimension) is called positive

(semi)definite if for all . We denote this as

Useful definitions and notations

n Rn m × n

Rm×n

Basic linear algebra background
x y Rn

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi = y⊤x = ⟨y, x⟩

xi yi i

X Y Rm×n

⟨X, Y ⟩ = tr(X ⊤Y) =
m∑

i=1

n∑
j=1

XijYij = tr(Y ⊤X) = ⟨Y , X⟩

detA =
n

∏
i=1

λi, trA =
n

∑
i=1

λi

A, B, C, D

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

λmin(A) = inf
x≠0

x⊤Ax

x⊤x
, λmax(A) = sup

x≠0

x⊤Ax

x⊤x

∀x ∈ Rn

λmin(A)x⊤x ≤ x⊤Ax ≤ λmax(A)x⊤x

A ∈ Sn n

x ≠ 0(for all x) : x⊤Ax > (≥)0

✗c- Ñ
mis
CTPOK CTONBEU>

t.lt:-)
lxn n×1 \ I

1.C-3)+2 .5=
= 7

n EtonBYOB cneg
3-nlcllltttob

mxnmxnnxmnyy.my#MATPh461
/%"" eé Guaranty may

l☒=
metpok tr /In) = nY

,
✗ c- ☒ mxn

A. e- He
nxn nxi

A.⇐ °

, 8) 2×3 n e- corrib.
eodctb. GEKTOD

2 nueen d- codctb .
detA= ? ↑ uueno

CMEKTPMATPU461

A- = At
At

A=•⑦)
"

ATÑ

V-xeÑ : <× ,Ax> =xtA✗ >(3) 0 A- (E) A- AT
AT -1¥)

.

The condition number of a nonsingular matrix is defined as

Let be a matrix of size , and be a matrix of size , and let the product

 be:

then is a matrix, with element given by:

Let be a matrix of shape , and be vector, then the -th component of

the product:

is given by:

Finally, just to remind:

 (but if and are commuting matrices, which means that

,)

Let , then vector, which contains all first order partial derivatives:

A ≻ (⪰)0

κ(A) = ∥A∥∥A−1∥

Matrix and vector multiplication
A m × n B n × p

AB

C = AB

C m × p (i, j)

cij =
n∑

k=1

aikbkj

A m × n x n × 1 i

z = Ax

zi =
n

∑
k=1

aikxk

• C = AB C ⊤ = B⊤A⊤

• AB ≠ BA

• eA =
∞
∑
k=0

1
k! Ak

• eA+B ≠ eAeB A B

AB = BA eA+B = eAeB

• ⟨x, Ay⟩ = ⟨A⊤x, y⟩

Gradient
f(x) : Rn → R ⎜ ⎟ecru AE 15++11-0 At '◦ :)

feed/A) >0
✗ c-☒ (E) * Ax

Hix.)('◦ 9) (E)
4. xD . =

◦ (ng ri
"" "

=(x , ✗a) (E) =
kb-MATPM.cn (n) mxp mxnnxp = ✗↑ -12×22 ≥ 0

*Hi :)iÉ!É%aibi
µ, ✗a) =

Xiixia -1×1*-1×2?
"

Cii = Xit2xxztXi=

=⇔Ñ≥o
MXL mxn nx

'
i÷

MXP mxnnxp pxm pxn nxm

ATB#
him pxn

ATT = A
nxl him mX1 mxnnxl MXI

✗TAY (Atx)ty=
=xTAy

named gradient of . This vector indicates the direction of steepest ascent. Thus,

vector means the direction of the steepest descent of the function in the

point. Moreover, the gradient vector is always orthogonal to the contour line in the

point.

Let , then matrix, containing all the second order partial derivatives:

In fact, Hessian could be a tensor in such a way: is just 3d tensor,

every slice is just hessian of corresponding scalar function

.

The extension of the gradient of multidimensional is the following

matrix:

∇f(x) =
df

dx
=

⎛⎜⎝ ∂f
∂x1

∂f
∂x2

⋮
∂f

∂xn

⎞⎟⎠f(x)
−∇f(x)

Hessian
f(x) : Rn → R

f ′′(x) = ∂ 2f

∂xi∂xj

=

⎛⎜⎝ ∂ 2f
∂x1∂x1

∂ 2f
∂x1∂x2

… ∂ 2f
∂x1∂xn

∂ 2f

∂x2∂x1

∂ 2f

∂x2∂x2
… ∂ 2f

∂x2∂xn

⋮ ⋮ ⋱ ⋮
∂ 2f

∂xn∂x1

∂ 2f
∂xn∂x2

… ∂ 2f
∂xn∂xn

⎞⎟⎠(f(x) : Rn → Rm)

(H (f1(x)), H (f2(x)), … , H (fm(x)))

Jacobian
f(x) : Rn → Rm

f ′(x) = df

dxT
=

⎛⎜⎝ ∂f1
∂x1

∂f1
∂x2

… ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

… ∂f2
∂xn

⋮ ⋮ ⋱ ⋮
∂fm

∂x1

∂fm

∂x2
… ∂fm

∂xn

⎞⎟⎠Summary

f'=D Uh ✗3 / eegnoBae)

f-
"
←

OTNULATO

meixgy
COBOÑ KPUT. TOZKUreeeuasl

☆Korman

f- 1×7=2 -✗ I
✗e-
R
"

f-A) = [a ,✗)
→ Rmfix = A.✗

Mxn hit

X Y G Name

 (derivative)

 (gradient)

 (jacobian)

The basic idea of naive approach is to reduce matrix/vector derivatives to the well-

known scalar derivatives.

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical tricks here is to separate indices of sum () and

⎜ ⎟⎜ ⎟⎜ ⎟f(x) : X → Y ;
∂f(x)

∂x
∈ G

R R R f ′(x)

Rn R R! ∂f

∂xi

Rn Rm Rm×n
∂fi

∂xj

Rm×n R Rm×n
∂f

∂xij

General concept

Naive approach

i

trueno Uueno yucno

-

BEKTOP YUCNO BEKTOP

MATPULHA YUCNO

1) is-17
nlpuuep : fix)=det✗f(✗=trX

= rgx

0ki"_"=
=%¥=Cn

partial derivatives (). Ignoring this simple rule tends to produce mistakes.

The guru approach implies formulating a set of simple rules, which allows you to

calculate derivatives just like in a scalar case. It might be convenient to use the

differential notation here.

After obtaining the differential notation of we can retrieve the gradient using

following formula:

Then, if we have differential of the above form and we need to calculate the second

derivative of the matrix/vector function, we treat “old” as the constant , then

calculate

Let and be the constant matrices, while and are the variables (or matrix

functions).

⎜ ⎟⎜ ⎟
k

Differential approach

Differentials
df

df(x) = ⟨∇f(x), dx⟩

dx dx1

d(df) = d2f(x)

d2f(x) = ⟨∇2f(x)dx1, dx2⟩ = ⟨Hf(x)dx1, dx2⟩

Properties

A B X Y

• dA = 0
• d(αX) = α(dX)
• d(AXB) = A(dX)B

• d(X + Y) = dX + dY

• d(X ⊤) = (dX)⊤

• d(XY) = (dX)Y + X(dY)
• d⟨X, Y ⟩ = ⟨dX, Y ⟩ + ⟨X, dY ⟩
•

d (X

ϕ
) =

ϕdX − (dϕ)X

ϕ2

• d (det X) = det X⟨X −⊤, dX⟩
• d (tr X) = ⟨I, dX⟩
• df(g(x)) = df

dg
⋅ dg(x)

• H = (J(∇f))T

f- : ☒
"
→☒ f- = EX

f-(x1=EX
df = f- (✗+DX) - f-(×) f(×+dñ=EH+d✗
If = Ex+EdX -É ✗ = EdX = <C,d✗>

I. Monnett df

2- Mpega-abuto
to

beige df= did

3- IÉÉÉ :

Convex Optimization book by S. Boyd and L. Vandenberghe - Appendix A.

Mathematical background.

Numerical Optimization by J. Nocedal and S. J. Wright. - Background Material.

Matrix decompositions Cheat Sheet.

Good introduction

The Matrix Cookbook

MSU seminars (Rus.)

Online tool for analytic expression of a derivative.

Determinant derivative

• d(X −1) = −X −1(dX)X −1

References
•

•

•

•

•

•

•

•

tlpwup : f-A) = evil, Ax> A- c- $:-,
✗ c-Rn f :Ñ→R <×,A✗) >0
Sagara : df =? If = ? (enf⇔j=f'¥,Peuienue :
I. df=d(lncx.AM/--dKIAI)-- ¥t¥

< ×,
Ax>

df =L ,d×)

=
(dx, Ax> + < ×,d(A

=
<Ax,dx> + <×, Adx>

=

<×, Ax> <×,
Ax>

= <A×,d¥;¥¥=(A(+Adx)<×, Ax>

f=↑;F¥-
Peuiutb :

f- (x) =¥_ Ax - b'✗ +C

✗c- A
"

; AER
""

;
berk ;c←R

Hañtu df = ? f- = ?

f- = £6, AD - lb,x> +C

xty = < ×
, y >

<db=°
,
✗ 5=0

d /b-<× ,Ax> - (b)×> +c) =
=£dk×,A×s) - dkbx >)+dcÉ
= { (Cdx, Ax> + Cx ,Ad×)) - <b,dx> =

= 12¢ Ax ,dx > + (Aix ,d×>)
- Cb,dD=

= < { (A-+A) × - b ,dx>

⇒ f- = £(A+A')x - b

f- (X) = tr (X)
'

Ff = ? Xeri
"

MATPuya ≤☒
nxu

f- 1×1 -_tr(×) -_tr.CI?X)=SI,X7df=d4I,Xs)=LI,dXs-f-- I
"
< dÉX> + (I ,dX >

"
o

f-A) =trX=
= ?Éxii ¥,p=°?i

P=i I

@ ✗Kp
UHAZC

,
?⃝?⃝

f- (X) =L ,5,X) - lndetx s=eonst

✗ c- ☒
MM SER

""

dldetx-detx.LI/-t,dX7-vf--?1.df--?df--ss,dxs-dHdeet+Y-=detk-o=cs.dx
> - ᵈ*ÉdS=o

= <

s-X-t.dk?-vf=S-X-tX-t--(x-Jt--(xtj'

Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of will be:

Idea

DiFFERENTiATiON
STABLE

SYMBOLiC

SLOW

NUMERICAL

FAST
MANUAL

(imprACTicAL)
IuNSTABLE

Chain rule

Univariate chain rule
R : R → R, L : R → R W ∈ R

∂R

∂W
= ∂R

∂L

∂L

∂W

Multivariate chain rule

∂
∂t

f(x1(t), x2(t)) = ∂f

∂x1

∂x1

∂t
+ ∂f

∂x2

∂x2

∂t

f : Rn → R

∂
∂t

f(x1(t), … , xn(t)) = ∂f

∂x1

∂x1

∂t
+ … + ∂f

∂xn

∂xn

∂t

f : Rn → Rm j f

where matrix is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of

∂
∂t

fj(x1(t), … , xn(t)) =
n∑

i=1

∂fj

∂xi

∂xi

∂t
=

n∑
i=1

Jji
∂xi

∂t
,

J ∈ Rm×n f

∂f

∂t
= J

∂x

∂t
⟺ (∂f

∂t
)⊤

= (∂x

∂t
)⊤

J ⊤

Backpropagation

L = L (y (z(w, x, b)), t)

z = wx + b
∂z

∂w
= x, ∂z

∂x
= w, ∂z

∂b
= 0

y = σ(z) ∂y

∂z
= σ′(z)

L = 1
2

(y − t)2 ∂L

∂y
= y − t,

∂L

∂t
= t − y

the loss function w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let be a topological ordering of the computation graph (i.e. parents come

before children). denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute as a function of its parents.

For :

Compute derivatives

Note, that term is coming from the children of , while is already precomputed

effectively.

L

vi = ∂L

∂vi

–

v1, . . . , vN

vN

Forward pass:

• i = 1, … , N

• vi

Backward pass:

• vN = 1–

• i = N − 1, … , 1

•
vi = ∑

j∈Children(vi)
vj

∂vj

∂vi

––

vj
–vi
–∂vj

∂vi

Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),

 lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where is a new vector-valued function that dots the gradient of at

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product

f : Rn → R
x ∈ Rn ∂ 2f(x)

v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n

∂ 2f(x)v = ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f

x v

Code

Materials

Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

•

•

•

•

•

Exercises / Matrix calculus

Matrix calculus
Find the derivatives of 1 f(x) = Ax, ∇xf(x) =?, ∇Af(x) =?
Find , if .2 ∇f(x) f(x) = cT x

Find , if .3 ∇f(x) f(x) = 1
2

xT Ax + bT x + c

Find , if .4 ∇f(x), f ′′(x) f(x) = −e−xT x

Find the gradient and hessian , if .5 ∇f(x) f ′′(x) f(x) = 1
2

∥Ax − b∥2
2

Find , if .6 ∇f(x) f(x) = ∥x∥2, x ∈ Rp ∖ {0}
Find , if .7 ∇f(x) f(x) = ∥Ax∥2, x ∈ Rp ∖ {0}

Find , if .8 ∇f(x), f ′′(x) f(x) =
−1

1 + x⊤x

Calculate and for the function .9 df(x) ∇f(x) f(x) = log(x⊤Ax)

Find , if

Note: here under assumes first order approximation of using Taylor

series:

10 f ′(X) f(X) = det X

f ′(X) f(X)
f(X + ∆X) ≈ f(X) + tr(f ′(X)⊤∆X)

Find , if

Note: here under assumes second order approximation of using Taylor

series:

11 f ′′(X) f(X) = log det X

f ′′(X) f(X)
f(X + ∆X) ≈ f(X) + tr(f ′(X)⊤∆X) + 1

2 tr(∆X ⊤f ′′(X)∆X)

Find gradient and hessian of , if:12 f : Rn → R

f(x) = log
m∑

i=1

exp(a⊤
i x + bi), a1, … , am ∈ Rn; b1, … , bm ∈ R

What is the gradient, Jacobian, Hessian? Is there any connection between those

three definitions?

13

Calculate: 14 ∂
∂X

∑ eig(X),
∂

∂X
∏ eig(X),

∂
∂X

tr(X),
∂

∂X
det(X)

Calculate the Frobenious norm derivative: 15 ∂
∂X

∥X∥2
F

Calculate the gradient of the softmax regression in binary case () -

dimensional objects:

16 ∇θL K = 2 n⎢ ⎥ ⎢ ⎥

hθ(x) = = 1
∑K

j=1 exp(θ(j)⊤x)

⎡⎢⎣ P(y = 1|x; θ)
P(y = 2|x; θ)

⋮
P(y = K|x; θ)

⎤⎥⎦ ⎡⎢⎣ exp(θ(1)⊤x)

exp(θ(2)⊤x)

⋮

exp(θ(K)⊤x)

⎤⎥⎦L(θ) = − [n∑
i=1

(1 − y(i)) log(1 − hθ(x(i))) + y(i) log hθ(x(i))]
Find , if 17 ∇f(X) f(X) = tr AX

Find , if 18 ∇f(X) f(X) = ⟨S, X⟩ − log det X

Find , if 19 ∇f(X) f(X) = ln⟨Ax, x⟩, A ∈ S!
++

Find the gradient and hessian , if20 ∇f(x) f ′′(x)

f(x) = ln (1 + exp⟨a, x⟩)

Find the gradient and hessian , if 21 ∇f(x) f ′′(x) f(x) = 1
3 ∥x∥3

2

Calculate , if 22 ∇f(X) f(X) = ∥AX − B∥F , X ∈ Rk×n, A ∈ Rm×k, B ∈ Rm×n

Calculate the derivatives of the loss function with respect to parameters

for the single object (or,)

Object Model Prediction Loss

Learning

23 ∂L
∂W , ∂L

∂b

xi n = 1

Find the gradient and hessian , if 24 ∇f(x) f ′′(x) f(x) = ⟨x, x⟩⟨x,x⟩, x ∈ Rp ∖ {0}
Find the gradient and hessian , if 25 ∇f(x) f ′′(x)
f(x) = ⟨Ax,x⟩

∥x∥2
2

, x ∈ Rp ∖ {0}, A ∈ Sn

Find the gradient and hessian , if 26 ∇f(x) f ′′(x) f(x) = 1
2 ∥A − xx⊤∥2

F , A ∈ Sn

Find the gradient and hessian , if 27 ∇f(x) f ′′(x) f(x) = ∥xx⊤∥2

Find the gradient and hessian , if

.

28 ∇f(x) f ′′(x)

f(x) = 1
n

n

∑
i=1

log (1 + exp(a⊤
i x)) + µ

2 ∥x∥2
2, ai ∈ Rn, µ > 0

Match functions with their gradients:29

f(X) = TrX

⎢ ⎥ ⎢ ⎥
f(X) = TrX−1

f(X) = det X

f(X) = ln det X

a ∇f(X) = X−1

b ∇f(X) = I
c ∇f(X) = det(X) ⋅ (X−1)⊤

d ∇f(X) = −(X−2)⊤

Calculate the first and the second derivative of the following function

 where .

30 f : S → R
f(t) = det(A − tIn), A ∈ Rn×n, S := {t ∈ R : det(A − tIn) ≠ 0}
Find the gradient , if .31 ∇f(x) f(x) = tr (AX 2BX −⊤)

Exercises / Automatic differentiation

Automatic differentiation
Calculate the gradient of a Taylor series of a using autograd library:

 import autograd.numpy as np # Thinly-wrapped version of Numpy

 from autograd import grad

 def taylor_cosine(x): # Taylor approximation to cosine function

 # Your np code here

 return ans

1 cos(x)

In the following code for the gradient descent for linear regression change the

manual gradient computation to the PyTorch/jax autograd way. Compare those two

approaches in time.

In order to do this, set the tolerance rate for the function value . Compare

the total time required to achieve the specified value of the function for analytical

and automatic differentiation. Perform measurements for different values of from

np.logspace(1,4) .

For each value carry out at least 3 runs.

 import numpy as np

 # Compute every step manually

 # Linear regression

 # f = w * x

 # here : f = 2 * x

 X = np.array([1, 2, 3, 4], dtype=np.float32)

 Y = np.array([2, 4, 6, 8], dtype=np.float32)

 w = 0.0

 # model output

 def forward(x):

 return w * x

2

ε = 10−9

n

n

 # loss = MSE

 def loss(y, y_pred):

 return ((y_pred - y)**2).mean()

 # J = MSE = 1/N * (w*x - y)**2

 # dJ/dw = 1/N * 2x(w*x - y)

 def gradient(x, y, y_pred):

 return np.dot(2*x, y_pred - y).mean()

 print(f'Prediction before training: f(5) = {forward(5):.3f}')

 # Training

 learning_rate = 0.01

 n_iters = 20

 for epoch in range(n_iters):

 # predict = forward pass

 y_pred = forward(X)

 # loss

 l = loss(Y, y_pred)

 # calculate gradients

 dw = gradient(X, Y, y_pred)

 # update weights

 w -= learning_rate * dw

 if epoch % 2 == 0:

 print(f'epoch {epoch+1}: w = {w:.3f}, loss = {l:.8f}')

 print(f'Prediction after training: f(5) = {forward(5):.3f}')

Calculate the 4th derivative of hyperbolic tangent function using Jax autograd.3

Compare analytic and autograd (with any framework) approach for the hessian of:4

f(x) = 1
2

xT Ax + bT x + c

HIPS autograd

PyTorch autograd

Jax Autodiff cookbook

Compare analytic and autograd (with any framework) approach for the gradient of:5

f(X) = tr(AXB)

Compare analytic and autograd (with any framework) approach for the gradient and

hessian of:

6

f(x) = 1
2

∥Ax − b∥2
2

Compare analytic and autograd (with any framework) approach for the gradient and

hessian of:

7

f(x) = ln (1 + exp⟨a, x⟩)

Materials
•

•

•

