Link Search Menu Expand Document

Matrix calculus

  1. Find the gradient \(\nabla f(x)\) and hessian \(f''(x)\), if \(f(x) = \dfrac{1}{2} \|Ax - b\|^2_2\).
  2. Find gradient and hessian of \(f : \mathbb{R}^n \to \mathbb{R}\), if:

    \[f(x) = \log \sum\limits_{i=1}^m \exp (a_i^\top x + b_i), \;\;\;\; a_1, \ldots, a_m \in \mathbb{R}^n; \;\;\; b_1, \ldots, b_m \in \mathbb{R}\]
  3. Calculate the derivatives of the loss function with respect to parameters \(\frac{\partial L}{\partial W}, \frac{\partial L}{\partial b}\) for the single object \(x_i\) (or, \(n = 1\))
  4. Calculate: \(\dfrac{\partial }{\partial X} \sum \text{eig}(X), \;\;\dfrac{\partial }{\partial X} \prod \text{eig}(X), \;\;\dfrac{\partial }{\partial X}\text{tr}(X), \;\; \dfrac{\partial }{\partial X} \text{det}(X)\)
  5. Calculate the first and the second derivative of the following function \(f : S \to \mathbb{R}\) \(f(t) = \text{det}(A βˆ’ tI_n),\) where \(A \in \mathbb{R}^{n \times n}, S := \{t \in \mathbb{R} : \text{det}(A βˆ’ tI_n) \neq 0\}\).
  6. Find the gradient \(\nabla f(x)\), if \(f(x) = \text{tr}\left( AX^2BX^{-\top} \right)\).

Automatic differentiation

  1. Implement analytical expression of the gradient and hessian of the following functions:

    a. \(f(x) = \dfrac{1}{2}x^TAx + b^Tx + c\) b. \(f(x) = \ln \left( 1 + \exp\langle a,x\rangle\right)\) c. \(f(x) = \dfrac{1}{2} \|Ax - b\|^2_2\)

    and compare the analytical answers with those, which obtained with any automatic differentiation framework (autograd\jax\pytorch\tensorflow). Manuals: Jax autograd manual, general manual.

import numpy as np

n = 10
A = np.random.rand((n,n))
b = np.random.rand(n)
c = np.random.rand(n)

def f(x):
    # Your code here
    return 0

def analytical_df(x):
    # Your code here
    return np.zeros(n)

def analytical_ddf(x):
    # Your code here
    return np.zeros((n,n))

def autograd_df(x):
    # Your code here
    return np.zeros(n)

def autograd_ddf(x):
    # Your code here
    return np.zeros((n,n))

x_test = np.random.rand(n)

print(f'Analytical and autograd implementations of the gradients are close: {np.allclose(analytical_df(x_test), autograd_df(x_test))}')
print(f'Analytical and autograd implementations of the hessians are close: {np.allclose(analytical_ddf(x_test), autograd_ddf(x_test))}')

Convex sets

  1. Prove that the set of square symmetric positive definite matrices is convex.
  2. Show, that \(\mathbf{conv}\{xx^\top: x \in \mathbb{R}^n, \|x\| = 1\} = \{A \in \mathbb{S}^n_+: \text{tr}(A) = 1\}\).
  3. Show that the hyperbolic set of \(\{x \in \mathbb{R}^n_+ | \prod\limits_{i=1}^n x_i \geq 1 \}\) is convex. Hint: For \(0 \leq \theta \leq 1\) it is valid, that \(a^\theta b^{1 - \theta} \leq \theta a + (1-\theta)b\) with non-negative \(a,b\).
  4. Prove, that the set $S \subseteq \mathbb{R}^n$ is convex if and only if $(\alpha + \beta)S = \alpha S + \beta S$ for all non-negative $\alpha$ and $\beta$.
  5. Let \(x \in \mathbb{R}\) is a random variable with a given probability distribution of \(\mathbb{P}(x = a_i) = p_i\), where \(i = 1, \ldots, n\), and \(a_1 < \ldots < a_n\). It is said that the probability vector of outcomes of \(p \in \mathbb{R}^n\) belongs to the probabilistic simplex, i.e. \(P = \{ p \mid \mathbf{1}^Tp = 1, p \succeq 0 \} = \{ p \mid p_1 + \ldots + p_n = 1, p_i \ge 0 \}\). Determine if the following sets of \(p\) are convex:

    1. \(\mathbb{P}(x > \alpha) \le \beta\)
    2. \(\mathbb{E} \vert x^{201}\vert \le \alpha \mathbb{E}\vert x \vert\)
    3. \(\mathbb{E} \vert x^{2}\vert \ge \alpha\)
    4. \(\mathbb{V}x \ge \alpha\)

Convex functions

  1. Prove, that function \(f(X) = \mathbf{tr}(X^{-1}), X \in S^n_{++}\) is convex, while \(g(X) = (\det X)^{1/n}, X \in S^n_{++}\) is concave.
  2. Kullback–Leibler divergence between \(p,q \in \mathbb{R}^n_{++}\) is:

    \[D(p,q) = \sum\limits_{i=1}^n (p_i \log(p_i/q_i) - p_i + q_i)\]

    Prove, that \(D(p,q) \geq 0 \; \forall p,q \in \mathbb{R}^n_{++}\) ΠΈ \(D(p,q) = 0 \leftrightarrow p = q\)

    Hint: \(D(p,q) = f(p) - f(q) - \nabla f(q)^T(p-q), \;\;\;\; f(p) = \sum\limits_{i=1}^n p_i \log p_i\)

  3. Let \(x\) be a real variable with the values \(a_1 < a_2 < \ldots < a_n\) with probabilities \(\mathbb{P}(x = a_i) = p_i\). Derive the convexity or concavity of the following functions from \(p\) on the set of \(\left\{p \mid \sum\limits_{i=1}^n p_i = 1, p_i \ge 0 \right\}\)
    • \(\mathbb{E}x\)
    • \(\mathbb{P}\{x \ge \alpha\}\)
    • \(\mathbb{P}\{\alpha \le x \le \beta\}\)
    • \(\sum\limits_{i=1}^n p_i \log p_i\)
    • \(\mathbb{V}x = \mathbb{E}(x - \mathbb{E}x)^2\)
    • \(\mathbf{quartile}(x) = {\operatorname{inf}}\left\{ \beta \mid \mathbb{P}\{x \le \beta\} \ge 0.25 \right\}\)
  4. Is the function returning the arithmetic mean of vector coordinates is a convex one: \(a(x) = \frac{1}{n}\sum\limits_{i=1}^n x_i\), what about geometric mean: \(g(x) = \prod\limits_{i=1}^n \left(x_i \right)^{1/n}\)?
  5. Is \(f(x) = -x \ln x - (1-x) \ln (1-x)\) convex?
  6. Let \(f: \mathbb{R}^n \to \mathbb{R}\) be the following function: \(f(x) = \sum\limits_{i=1}^k x_{\lfloor i \rfloor},\) where \(1 \leq k \leq n\), while the symbol \(x_{\lfloor i \rfloor}\) stands for the \(i\)-th component of sorted (\(x_{\lfloor 1 \rfloor}\) - maximum component of \(x\) and \(x_{\lfloor n \rfloor}\) - minimum component of \(x\)) vector of \(x\). Show, that \(f\) is a convex function.

General optimization problems

  1. Give an explicit solution of the following LP.

    \[\begin{split} & c^\top x \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & Ax = b \end{split}\]
  2. Give an explicit solution of the following LP.

    \[\begin{split} & c^\top x \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & 1^\top x = 1, \\ & x \succeq 0 \end{split}\]

    This problem can be considered as a simplest portfolio optimization problem.

  3. Give an explicit solution of the following LP.

    \[\begin{split} & c^\top x \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & 1^\top x = \alpha, \\ & 0 \preceq x \preceq 1, \end{split}\]

    where \(\alpha\) is an integer between \(0\) and \(n\). What happens if \(\alpha\) is not an integer (but satisfies \(0 \leq \alpha \leq n\))? What if we change the equality to an inequality \(1^\top x \leq \alpha\)?

  4. Give an explicit solution of the following QP.

    \[\begin{split} & c^\top x \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & x^\top A x \leq 1, \end{split}\]

    where \(A \in \mathbb{S}^n_{++}, c \neq 0\). What is the solution if the problem is not convex \((A \notin \mathbb{S}^n_{++})\) (Hint: consider eigendecomposition of the matrix: \(A = Q \mathbf{diag}(\lambda)Q^\top = \sum\limits_{i=1}^n \lambda_i q_i q_i^\top\) and different cases of \(\lambda >0, \lambda=0, \lambda<0\))?

  5. Give an explicit solution of the following QP.

    \[\begin{split} & c^\top x \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & (x - x_c)^\top A (x - x_c) \leq 1, \end{split}\]

    where \(A \in \mathbb{S}^n_{++}, c \neq 0, x_c \in \mathbb{R}^n\).

  6. Give an explicit solution of the following QP.

    \[\begin{split} & x^\top Bx \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & x^\top A x \leq 1, \end{split}\]

    where \(A \in \mathbb{S}^n_{++}, B \in \mathbb{S}^n_{+}\).

  7. Consider the equality constrained least-squares problem

    \[\begin{split} & \|Ax - b\|_2^2 \to \min\limits_{x \in \mathbb{R}^n }\\ \text{s.t. } & Cx = d, \end{split}\]

    where \(A \in \mathbb{R}^{m \times n}\) with \(\mathbf{rank }A = n\), and \(C \in \mathbb{R}^{k \times n}\) with \(\mathbf{rank }C = k\). Give the KKT conditions, and derive expressions for the primal solution \(x^*\) and the dual solution \(\lambda^*\).

  8. Derive the KKT conditions for the problem

    \[\begin{split} & \mathbf{tr \;}X - \log\text{det }X \to \min\limits_{X \in \mathbb{S}^n_{++} }\\ \text{s.t. } & Xs = y, \end{split}\]

    where \(y \in \mathbb{R}^n\) and \(s \in \mathbb{R}^n\) are given with \(y^\top s = 1\). Verify that the optimal solution is given by

    \[X^* = I + yy^\top - \dfrac{1}{s^\top s}ss^\top\]