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Chapter 1
Stochastic optimization and Data Science

Abstract This chapter aims to motivate stochastic optimization problems from a
statistical perspective and a statistical learning perspective, where the goal is to max-
imize the log-likelihood or minimize the population risk. We briefly describe the two
main approaches: offline (Monte Carlo / Sample Average Approximation) and on-
line (Stochastic Approximation) approaches – to solve the expectation minimization
problems of the type

min
G∈&

{
5 (G) := Eb∼D [ 5 (G, b)]

}
. (1.1)

1.1 Motivation to stochastic optimization

According to [114], «Optimization problems involving stochastic models occur in al-
most all areas of science and engineering, so diverse as telecommunication,medicine,
or finance, to name just a few. This stimulates interest in rigorous ways of formulat-
ing, analyzing, and solving such problems. Due to the presence of random parameters
in the model, the theory combines concepts of the optimization theory, the theory
of probability and statistics, and functional analysis. Moreover, in recent years the
theory and methods of stochastic programming have undergone major advances.»
This «major advances» are strongly stimulated by the explosion of interest in Data
science problems. In the last decade, several good books have appeared on the re-
lationship between Stochastic Optimization and Data Science [114, 110, 8]. In this
section, we briefly describe the two main origins of stochastic optimization prob-
lems in Data Science: 1) Statistical origin (maximum likelihood estimation) and 2)
Machine Learning origin (stochastic gradient descent and regularized expected risk
minimization).

3



4 1 Stochastic optimization and Data Science

1.1.1 Statistical motivation

We start with the simplest example. Let G∗ ∈ R be an unknown scalar parameter,
[ ∼ N

(
0, f2) be Gaussian noise. Assume that we can measure

b: = G∗ + [: , : = 1, ..., # ,

where [: are i.i.d. (independent identically distributed as [). The goal is to estimate
G∗ from

{
b:

}#
:=1.

The main observation is the following: G∗ is a solution of Stochastic optimization
problem

min
G∈R
Eb

[
5 (G, b) := (b − G)2

]
, (1.2)

where b ∼ N
(
G∗, f2) . Indeed,

Eb (b − G)2 = Eb b2 − 2GEb b + G2 = (G∗)2 + f2 − 2GG∗ + G2 = (G∗ − G)2 + f2

attainsminimum in G = G∗. However, G∗ is unknown (and probablyf2). Howproblem
(1.2) can be solved? Since

{
b:

}#
:=1 are available, the Monte Carlo approach can be

employed. This approach consists in replacing problem (1.2) by its empirical version

min
G∈R

[
1
#

#∑
:=1
(b: − G)2

]
. (1.3)

The solution to the problem (1.3) can be easily provided

Ḡ# =
1
#

#∑
:=1

b: . (1.4)

In Statistics, this average is known as the Sample Mean, which is the best known
(unbiased and with the smallest variance, see Theorem 1.1 below) estimate for the
unknown parameter in the described parametric model, see Theorem 1.1 hereinafter.

The solution (1.4) can be also obtained by the following online procedure

G:+1 = G: − 1
2(: + 1) ∇G 5 (G

: , b: ) = G: − 1
: + 1

(G: − b: ), : = 0, ..., # − 1, (1.5)

where G0 = b1. This procedure corresponds to the Stochastic Gradient Descent
(SGD) for 2-strongly convex in the 2-norm stochastic optimization problem (1.2).

A natural question arising here: by what scheme was 5 (G, b) selected in (1.2)?
Probably there are many ways to choose 5 (G, b). If so, what is the «best» way to do
it? Further, we briefly describe the basics of the maximum likelihood theory, which
allows us to answer these questions.

Assume that some randomvariable b depends on an unknownvector of parameters
G∗ ∈ R=. Let ?(G, b) be the probability (probability density function) that we observe
b if the true vector of parameters is G ∈ R=. In the aforementioned example, = = 1
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and probability density function was

?(G, b) = 1
√

2cf2
exp

(
− (b − G)

2

2f2

)
.

If i.i.d. samples
{
b:

}#
:=1 are available let us introduce the likelihood

?

(
G,

{
b:

}#
:=1

)
=

#∏
:=1

?(G, b: ).

Perhaps, one of the most productive ideas in Statistics is to estimate the true vector of
parameters G∗ as a vector thatmaximizes likelihood ?

(
G,

{
b:

}#
:=1

)
. This problem can

be equivalently reformulated as minimization of (normalized) minus log-likelihood

min
G∈R=

[
− 1
#

log ?
(
G,

{
b:

}#
:=1

)
= − 1

#

#∑
:=1

log ?(G, b: )
]
.

This minimization problem can be considered as the empirical (sometimes called
Monte Carlo) version of the Stochastic optimization problem

min
G∈R=
Eb [− log ?(G, b)] . (1.6)

In particular, for the aforementioned Gaussian model, this problem looks like

min
G∈R
Eb

[
1

2f2 (b − G)
2 + 1

2
log

(
2cf2

)]
,

which is equivalent to (1.2).
Moreover, the observation that the true value of unknown vector of parameters G∗

is a solution of (1.6) holds in the general case, i.e.,

G∗ ∈ Arg min
G∈R=
Eb [− log ?(G, b)] .

Indeed,1

Eb [− log ?(G, b)] = −
∫

?(G∗, b) log ?(G, b)3b ≥ −
∫

?(G∗, b) log ?(G∗, b)3b

since (Jensen’s inequality for the entropy)

 ! (?(G∗, ·), ?(G, ·)) =
∫

?(G∗, b) log
(
?(G∗, b)
?(G, b)

)
3b ≥ 0

and  ! (?(G∗, ·), ?(G, ·)) = 0, when G = G∗.

1 For certainty, here ? (G, b ) is assumed to be a probability density function.
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Thus, we explained that in the general case 5 (G, b) := − log ?(G, b) in (1.2) and
the maximum likelihood approach is nothing more than the Monte Carlo approach
for Stochastic optimization problem (1.6).

Definitely the main gem of Statistics is the Fisher’s theorem about asymptotic
properties of maximum likelihood estimation (MLE)

Ĝ#"!� = arg max
G∈R=

?

(
G,

{
b:

}#
:=1

)
= arg min

G∈R=

[
− log ?

(
G,

{
b:

}#
:=1

)]
. (1.7)

The next theorem presents an informal variant of this theorem.

Theorem 1.1 Assume that ?(G, b) is sufficiently smooth and the set

{b : ?(G, b) > 0}

does not depend on G.2 Then

1. for all unbiased statistics G̃#
({
b:

}#
:=1

)
with finite second moment, the Rao–

Cramer inequality holds3

E{b :}#:=1

[(
G̃#

({
b:

}#
:=1

)
− G∗

) (
G̃#

({
b:

}#
:=1

)
− G∗

)) ]
< [#�G∗ ]−1 ,

where
�G∗ = Eb

[
∇G log ?(G∗, b) (∇G log ?(G∗, b)))

]
is the Fisher information matrix.4

2. MLE Ĝ#
"!�

({
b:

}#
:=1

)
(see (1.7)) has asymptotically5 normal (Gaussian) dis-

tribution N
(
G∗,

[
#�G∗ ,#

]−1
)
and the Rao–Cramer inequality turns into the

equality. This means that MLE has the asymptotically smallest variance along
all the directions and no matter what G∗ is.

As a consequence of this theorem, the asymptotically smallest confidence set around
MLE can be constructed. The online approach (based on the SGD, proper stepsize
policy and the Polyak–Juditsky–Ruppert averaging) leads to a similar asymptotic
result.

Unfortunately, the asymptotic theory does not fully characterize the real state
of affairs when # is not sufficiently large. Indeed, let us consider the Bernoullie
parametric model (coin flipping) with likelihood ?(G, b) = G b (1− G)1−b and G∗ > 0
small enough. Then while # . 1/G∗ with positive probability, for MLE Ĝ# = 0
[110]. Hence Eb [− log ?(0, b)] = ∞ is not well defined.

2 This is satisfied for Gaussian noise model b = G+ [, but is not satisfied if the noise [ is uniformly
distributed on [0, G ]. We emphasis, that this assumption is informal.
3 � < � means that for all I ∈ R= 〈I, (�− �)I 〉 ≥ 0.
4 Note that  ! (? (G∗, · ) , ? (G∗ + H, · )) ' 1

2 〈H, �G∗ H〉.
5 Under assumption that # →∞.
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Modern offline asymptotic theory of statistics [54] (le Cam’s theory) was fur-
ther developed in a partially non-asymptotic and misspecification6 directions, see
e.g. [117]. In this book, we mainly (except the next section) concentrate on non-
asymptotic online approaches for (1.6) and more general problem formulations.

At the end of this section, we aim to demonstrate the role of regularization in
the offline approach as a Bayesian prior. Assume that in the general scheme, which
described by the parametric model ?(G, b), we have an additional information about
vector of parameters G: G is a random vector that was priory independently generated
from the distribution with density function c(G).

A Bayesian estimator is an estimator that minimizes the posterior expected value
of the loss function (we consider quadratic loss), which coincides with a posterior
mean

Ĝ#� = arg min
G∈R=

∫
R=

‖G−I‖2?
(
I,

{
b:

}#
:=1

)
c(I)3I =

∫
R=

G

?

(
G,

{
b:

}#
:=1

)
c(G)∫

R=
?

(
H,

{
b:

}#
:=1

)
c(H)3H

3G.

(1.8)
The next theorem presents an informal analogue of Theorem 1.1 in this case.

Theorem 1.2 Assume that ?(G, b) and c(G) are sufficiently smooth and the set

{b : ?(G, b) > 0}

does not depend on G. Then

1. for all statistics G̃#
({
b:

}#
:=1

)
with finite second moment, the van Trees inequal-

ity holds

E(
G,{b :}#:=1

) [(
G̃#

({
b:

}#
:=1

)
− G

) (
G̃#

({
b:

}#
:=1

)
− G

)) ]
<

[
#�? + �c

]−1
,

where
�? = E(G, b )

[
∇G log ?(G, b) (∇G log ?(G, b)))

]
is the Fisher information matrix and

�c = EG
[
∇ log c(G) (∇ log c(G)))

]
.

2. Bayesian estimator Ĝ#
�

({
b:

}#
:=1

)
(see (1.8)) has conditional (with a priori

drawing G = G∗) asymptotically normal distribution N
(
G∗, [#�G∗ ]−1

)
, where

�G∗ was introduced in Theorem 1.1.

6 If the parametric model is wrong, MLE can be interpreted as the asymptotically best way to
estimate the KL-projection of the true vector of parameters on the parametric model.
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A close result is contained in the Bernstein–von Mises theorem: a posterior
distribution has asymptotically normal distribution centered at MLEwith covariance
matrix #�G∗ .

In Bayesian statistics, a maximum a posterior estimation (MAP)

Ĝ#"�% = arg max
G∈R=

?

(
G,

{
b:

}#
:=1

)
c(G) = arg min

G∈R=

[
− log ?

(
G,

{
b:

}#
:=1

)
− log c(G)

]
.

plays also an important role. MAP has typically the same asymptotic behavior as
Bayesian estimator.

Let us consider several examples. The first example is Regularized Least Squares.

Ridge Regression and LASSO

Let G∗ ∈ R= be an unknown vector of parameters and [ ∼ N
(
0, f2) be Gaussian

noise. Assume that we can measure

b: = 〈0: , G∗〉 + [: , : = 1, ..., # ,

where [: are i.i.d. (independent identically distributed as [) and matrix � =

[01, ..., 0# ]) is known.7 The goal is to estimate G∗ from b :=
{
b:

}#
:=1. Simple

calculations lead to the following formulas8

Ĝ#"!� = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2

]
,

Ĝ#� = Ĝ#"�% = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2 +

1
2f2

c

‖G − Ḡ‖22
]
,

where a priory G8 , 8 = 1, ..., = are assumed to be independent and identically dis-
tributed according to N

(
Ḡ, f2

c

)
(Ridge Regression) and

Ĝ#"�% = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2 + _‖G‖1

]
,

where the prior probability density is (LASSO):

c(G) =
=∏
8=1

_

2
exp(−_ |G8 |) =

(
_

2

)=
exp (−_‖G‖1) .

It is obvious that Bayesian estimator and MAP asymptotically (# → ∞) coin-
cide with MLE. Another important observation that Bayesian estimator and MAP
asymptotically coincide with MLE when f2

c → ∞. Both of these observations take
place in the general case. So Bayesian prior can be interpreted as a regularizer in
Bayesian version of maximum likelihood optimization problem.

7 Note that 0: can also be generated randomly. In this case, to preserve the results it is sufficient to
require that {0: }=:=1 and

{
[:

}=
:=1 are independent.

8 We assume that parameters f2, f2
c , _ are known.
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The second example goes back to Vadim V. Mottl.

Soft-SVM

In this example, Soft-Support-Vector Machine (Soft-SVM) is derived based on
Bayesian inference with

?

(
G, b: :=

(
H: , 0:

))
∝

{
1, if H: 〈G, 0:〉 ≥ 1
exp

(
−

(
1 − H: 〈G, 0:〉

) )
, else,

where H: ∈ {−1, 1} and a priory G8 , 8 = 1, ..., = are assumed to be independent and
identically distributed according toN

(
0, f2

c

)
. Improper probability density function

?
(
G, b:

)
has a natural interpretation: there exists «true» hyperplane (determined by

the vector G∗) such that the data points with H: = 1 lie mostly from the one side of
this hyperplane and the data points with H: = −1 lie mostly from the other side. The
goal is to recognize this hyperplane from the data points having a prior information
about G∗. Simple calculations lead to the following formula

Ĝ#"�% = arg min
G∈R=

[
#∑
:=1

max
{
0, 1 − H: 〈G, 0:〉

}
+ 1

2f2
c

‖G‖22

]
.

1.1.2 Machine Learning motivation

In the statistical approach, the loss function is 5 (G, b) := − log ?(G, b). It means
that we require parametric model ?(G, b). In many practical situations, ?(G, b) is not
available. However in Regression problems we can introduce the least square loss
function 5 (G, b := (H, 0)) = (H − 〈0, G〉)2. Without any knowledge of probability
nature of b, we can consider the expected loss minimization problem (stochastic
optimization problem)

min
G∈R=
E(H,0)

[
(H − 〈0, G〉)2

]
.

In the offline approach, this problem has a form:

min
G∈R=

1
#
‖. − �G‖22,

where . =
(
H1, ..., H#

)) , � = [01, ..., 0# ]) . Similarly, in Classification problems
we can introduce the hinge-loss function 5 (G, b := (H, 0)) = max {0, 1 − H〈G, 0〉}
and corresponding stochastic optimization problems has the following form
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min
G∈R=
E(H,0) [max {0, 1 − H〈G, 0〉}] .

In many real world applications, we have some prior information about how much
could be (should be) G∗. Typically, this information is formalized as a constraint
of the type G ∈ &, where & is often chosen as a ball �=? ('?) in ?-norm (? ≥ 1)
centered at 0 with radius '? or another convex compact set with simple structure,
e.g. unit simplex (= (1). So the final stochastic optimization problem in general has
a form9

min
G∈&⊆R=

[
5 (G) := Eb 5 (G, b).

]
(1.9)

For & = �=2 ('2) (or & = �=1 ('1)) if the constraint is reached it can be replaced by
‖G‖22-regularization (or ‖G‖1-regularization) with Lagrange multiplayer as a regular-
ization parameter.

All aforementioned problems (Regression and Classification) have two things in
common. The target functions

1. are convex: for all b and G, I ∈ &

5 (I, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), I − G〉

and "-Lipschitz continuous in G in 2-norm: for all b and G, I ∈ &

| 5 (I, b) − 5 (G, b) | ≤ " ‖I − G‖2.

2. have generalized linear structure:

5 (G, b) := 6 (H(b), 〈G, 0(b)〉) .

The first common thing guarantees the effectiveness of the online approach. Both
of them guarantee the effectiveness of the offline approach.

Let us start with the offline approach. We introduce the empirical loss

5̄ (G) := 5̄

(
G,

{
b:

}#
:=1

)
=

1
#

#∑
:=1

5 (G, b: )

and its minimizer
Ĝ# ∈ Argmin

G∈&
5̄

(
G,

{
b:

}#
:=1

)
.

Theorem 1.3 (Learnability for generalized linearmodels)Consider the stochastic
optimization problem (1.9) with 5 (G, b) satisfying the aforementioned conditions 1
and 2 and convex & ⊆ �=2 ('). Then with probability at least 1 − V

9 Here and everywhere below we will denote the solution of this problem as G∗. If the solution is
not unique G∗ means one of the solutions, e.g. such that is the closest to the starting point (initial
guess).
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sup
G∈&

�� 5̄ (G) − 5 (G)�� = O (
"'

√
log (1/V)

#

)
.

Hence, with probability at least 1 − V the following holds

5 (G) − 5 (G∗) ≤ 5̄ (G) − 5̄ (Ĝ# ) + O
(
"'

√
log (1/V)

#

)
. (1.10)

If additionally for all b and G, I ∈ &,

5 (I, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), I − G〉 +
`

2
‖I − G‖22,

i.e., 5 (G, b) is `-strongly convex in G in 2-norm, then with probability at least 1 − V

5 (G) − 5 (G∗) ≤ 2
(
5̄ (G) − 5̄ (Ĝ# )

)
+ O

(
"2 log (1/V)

`#

)
. (1.11)

If the condition 2 is no longer met, then (1.11) should be rewritten as follows: with
probability at least 1 − V

5 (G) − 5 (G∗) ≤

√
2"2

`

(
5̄ (G) − 5̄ (Ĝ# )

)
+ Õ

(
"2 log (1/V)

`#

)
. (1.12)

Moreover, all these inequalities are optimal up to a constant factor.

This theorem reduces stochastic optimization problem to the empirical loss (risk)
minimization problem

min
G∈&

1
#

#∑
:=1

5 (G, b: ) (1.13)

with proper choice of # , see the next section.
Now we move to the online approach and explain why it is so called. The standard

SGD is in the core of the online approach:

G:+1 = c&
(
G: − W:∇G 5 (G: , b: )

)
, (1.14)

where c& is the Euclidean projection onto &. Note that

‖G:+1 − G∗‖22 =
c& (

G: − W:∇G 5 (G: , b: ) − G∗
)2

2

≤ ‖G: − W:∇G 5 (G: , b: ) − G∗‖22
= ‖G:+1 − G∗‖22 − 2W: 〈∇G 5 (G: , b: ), G: − G∗〉 + W2

: ‖∇G 5 (G
: , b: )‖22

≤ ‖G:+1 − G∗‖22 − 2W: 〈∇G 5 (G: , b: ), G: − G∗〉 + W2
:"

2.
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The last inequality holds as 5 (G, b) is "-Lipschitz continuous in G in 2-norm and
therefore, ‖∇G 5 (G: , b: )‖2 ≤ " . From the convexity of 5 (G, b) in G:

5 (G: , b: ) − 5 (G∗, b: ) ≤ 〈∇G 5 (G: , b: ), G: − G∗〉

≤ 1
2W:

(
‖G: − G∗‖22 − ‖G

:+1 − G∗‖22
)
+ W:"

2

2
.

From the `-strong convexity of 5 (G, b) in G:

5 (G: , b: ) − 5 (G∗, b: ) ≤ 〈∇G 5 (G: , b: ), G: − G∗〉 −
`

2
‖G: − G∗‖22

≤ 1
2

(
1
W:
− `

)
‖G: − G∗‖22 −

1
2W:
‖G:+1 − G∗‖22 +

W:"
2

2
.

Summing for : = 1, ..., # «convex» inequality with W: ≡ '

"
√
#

and «strongly
convex» inequality with10 W: = 1

`:
we obtain after normalization (multiplication on

#−1):
1
#

#∑
:=1

5 (G: , b: ) ≤ 1
#

#∑
:=1

5 (G∗, b: ) + " ‖G
1 − G∗‖2√
#

, (1.15)

1
#

#∑
:=1

5 (G: , b: ) ≤ 1
#

#∑
:=1

5 (G∗, b: ) + "
2 (1 + log #)

2`#
. (1.16)

Note that in (1.15), (1.16) G∗ ∈ & can be chosen in an arbitrary manner, say such
that to minimize RHS, i.e.,

1
#

#∑
:=1

5 (G: , b: ) ≤ min
G∈&

1
#

#∑
:=1

5 (G, b: ) + " ‖G
1 − G∗‖2√
#

,

1
#

#∑
:=1

5 (G: , b: ) ≤ min
G∈&

1
#

#∑
:=1

5 (G, b: ) + "
2 (1 + log #)

2`#
.

Since we still do not use the probability nature of b: , the last two inequalities
characterize the SGD (1.14) as online learning procedure in the standard online
sense [20].

If we remember now about i.i.d. nature of
{
b:

}#
:=1, remember that: Eb 5 (G, b) ≡

5 (G), 5 (G, b) is "-Lipschitz continuous in G in 2-norm and 5 (G) is convex, than
(1.15), (1.16) could be further simplify (online to batch conversion).
Theorem 1.4 Consider stochastic optimization problems (1.9) with 5 (G, b) satisfies
the condition 1. Then for G: generated by (1.14) with probability at least 1 − V:

5 (Ḡ# ) − 5 (G∗) = O
(
" ‖G1 − G∗‖2 log (1/V)

√
#

)
, (1.17)

10 In this case we have the telescopic property: 1
W:+1
− ` = 1

W:
.
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where

Ḡ# =
1
#

#∑
:=1

G: . (1.18)

If additionally 5 (G, b) is `-strongly convex in G in 2-norm, then with probability at
least 1 − V:

5 (Ḡ# ) − 5 (G∗) = O
(
"2 log (#/V)

`#

)
. (1.19)

Since ‖G1 − G∗‖2 ≤ 2', it follows that (1.17) and (1.19) correspond to (1.10) and
(1.11), (1.12) in sample complexity – the required number of samples # . However,
online approach does not require to solve an auxiliary empirical problem (1.13)
and was justified under weaker assumptions. More detailed comparison online and
offline approaches is given in the next section.

To conclude this section, remind the main observation: statistical approach for
data science problems is a particular case of the general machine learning (ML)
approach, where the loss function has a specific form determined by log-likelihood
functions. So further we will consider mainly the ML approach, which characterizes
stochastic optimization problem (1.9).

1.2 Sample Average Approximation vs Stochastic Approximation

In this section, we consider stochastic optimization problem (1.9)

min
G∈&⊆R=

[
5 (G) := Eb [ 5 (G, b)] .

]
(1.20)

We are mainly interested in the sample complexity of offline (also called Sample Av-
erage Approximation) and online (also called Stochastic Approximation) procedures,
which generate G̃#

({
b:

}#
:=1

)
from the solution of the empirical problem (1.13) or

from the procedure of type (1.14). More precisely, we are interested in estimating
such # := # (Y, V) that

P
(
5

(
G̃

(
{b: }#:=1

))
− 5 (G∗) ≤ Y

)
≥ 1 − V.

Assume that & ⊆ �=? ('?) (? ≥ 1) and for all b and G, H ∈ &

| 5 (H, b) − 5 (G, b) | ≤ "? ‖H − G‖ ? . (1.21)

Let Ḡ#
X,Ṽ

:= Ḡ#
X,Ṽ

(
{b: }#

:=1

)
be the

(
X, Ṽ

)
-solution of the empirical problem (1.13)

min
G∈&

[
5̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
,
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that is, with probability at least 1 − Ṽ:

5̄

(
Ḡ#
X,Ṽ

)
−min
G∈&

5̄ (G) = 5̄

(
Ḡ#
X,Ṽ

)
− 5̄

(
Ĝ#

)
≤ X.

1.2.1 Non-convex case and convex case

Oneof the first and quite unexpected results about the offline approach is the following

Theorem 1.5 Assume that (1.21) is satisfied. Then for Ḡ#
Y/2,V/2

(
{b: }#

:=1

)
,

# = O
(
"2
?'

2
?

Y2

(
= log

(
"?'?

Y

)
+ log

(
1
V

)))
. (1.22)

This bound is optimal up to a logarithmic factor. Moreover, if we additionally assume
that 5 (G, b) is convex and smooth in G, (1.22) is still an optimal bound.

Proof Nazary, please add the proof of the Theorem based on [114] (https://
cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/
SPbook.pdf) Sections 5.3.1 and 5.3.2.

The proof consists of two parts. Firstly, we prove the result for finite set &. And
then we generalize the result to the case of bounded &.

For Y ≥ 0 denote by

(Y :=
{
G ∈ & : 5 (G) ≤ min

G∈&
5 (G) + Y

}
, (̄Y :=

{
G ∈ & : 5̄ (G) ≤ min

G∈&
5̄ (G) + Y

}
the sets of Y-optimal solutions of the problem (1.20) and the empirical prob-
lem (1.13), respectively.

In the case of finite&, the sets (Y and (̄Y are nonempty and finite. For parameters
Y ≥ 0 and X ∈ [0, Y], consider the event {(̄X ⊂ (Y}. This event means that any
X-optimal solution of the empirical problem (1.13) is an Y-optimal solution of the
problem (1.20). Next, we estimate the probability of that event.

{(̄X ⊄ (Y} =
⋃

G∈&\(Y

⋂
H∈&

{
5̄ (G) ≤ 5̄ (H) + X

}
P

(
(̄X ⊄ (Y

)
≤

∑
G∈&\(Y

P
©«
⋂
H∈&

{
5̄ (G) ≤ 5̄ (H) + X

}ª®¬
Consider a mapping D : & \(Y −→ &. If the set& \(Y is empty, then any feasible

point G ∈ & is an Y-optimal solution of the true problem. Therefore we assume that
this set is nonempty. Then from the last inequality follows that

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
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P
(
(̄X ⊄ (Y

)
≤

∑
G∈&\(Y

P
(
5̄ (G) ≤ 5̄ (D(G)) + X

)
(1.23)

We assume that the mapping D(·) is chosen in such a way that 5 (D (G)) ≤
5 (G) − Y∗, for every G ∈ & \ (Y and for some Y∗ ≥ Y. Such a mapping always exists.
For example, if we use a mapping D : & \ (Y −→ ( (( – the set of minimizers of
5 (G) over &), then (1.23) holds with

Y∗ := min
G∈&\(Y

5 (G) −min
G∈&

5 (G)

and that Y∗ > Y since the set & is finite. Different choices of D() give a certain
flexibility to the following derivations.

We relax the condition (1.21) as follows: for . (G, H, b) := 5 (G, b) − 5 (H, b) and
for all G, H ∈ & sub-Gaussian variance of a random variable. (G, H, b)−Eb. (G, H, b)
bounded from above by _2‖H − G‖2? , i.e. for all C ∈ R:

Eb
[
exp

(
C ·

(
. (G, H, b) − Eb. (G, H, b)

) ) ]
≤ exp

(
C2_2‖G − H‖2?/2

)
. (1.24)

The assumption holds, for example, if the support of b is a bounded subset of R3 ,
or if . (G, H, b) grows at most linearly and b has a distribution from an exponential
family. Note that if (1.21) holds, then _2 ≤ 2"2

? . 11
For each G ∈ & \ (Y and G ′ := D(G), define

. (G ′, G, b) := 5 (G ′, b) − 5 (G, b)

Note that Eb [. (G ′, G, b)] = 5 (G ′) − 5 (G), and hence Eb [. (G ′, G, b)] ≤ −Y∗ for all
G ∈ & \ (Y due to the mapping choice.

The corresponding sample average is

.̄ (G ′, G) :=
1
#

#∑
:=1

. (G ′, G, b: ) = 5̄ (G ′) − 5̄ (G).

By (1.23) we have

P
(
(̄X ⊄ (Y

)
≤

∑
G∈&\(Y

P
(
.̄ (G ′, G) ≥ −X

)
. (1.26)

11 If the assumption (1.21) holds then the expectation function 5 (G) is also Lipschitz continuous
on & with Lipschitz constant "? , and hence the random variable . (G, H, b ) − Eb. (G, H, b )
can be bounded as |. (G, H, b ) − Eb. (G, H, b ) | ≤ 2"? ‖G − H ‖ w.p. 1. Moreover, we have that
Eb

(
. (G, H, b ) − Eb. (G, H, b )

)
= 0, and hence it follows by Hoeffding’s inequality that

Eb
[
exp

(
C ·

(
. (G, H, b ) − Eb. (G, H, b )

) ) ]
≤ exp

(
C2 · 2" 2

? ‖G − H ‖2?
)
, ∀C ∈ R. (1.25)
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Let �G,G′ (·) denote the (large deviations) rate function of the random variable
. (G ′, G, b). The inequality (1.26) together with the LD upper bound is it enough for
proof? implies

1 − P
(
(̄X ⊂ (Y

)
≤

∑
G∈&\(Y

exp
(
−#�G,G′ (−X)

)
Let Y and X be non-negative numbers. Then the latter inequality implies

1 − P
(
(̄X ⊂ (Y

)
≤ |& | exp (−#[(X, Y)) , (1.27)

where [(X, Y) = minG∈&\(Y �G,G′ (−X).
It follows from (1.24) that

lnEb exp {C. (G, G ′, b)} − CEb. (G, G ′, b) ≤
_2‖G − G ′‖2?

2
≤
_2'2

?

2
. (1.28)

Note, that it is suffices for the proof to verify assumption (1.24) for every: H = D(G) ∈
& \ (Y .

Hence the rate function �G,G′ (·), of . (G, G ′, b), satisfies

�G,G′ (I) ≥ sup
C ∈R

(
C
(
I − Eb. (G, G ′, b)

)
−
_2'2

?

2

)
=

(
I − Eb. (G, G ′, b)

)2

2_2'2
?

,∀I ∈ R.

In particular, it follows that

�G,G′ (I) ≥
(
−X − Eb. (G, G ′, b)

)2

2_2'2
?

≥ (Y
∗ − X)2

2_2'2
?

≥ (Y − X)
2

2_2'2
?

Consequently the constant [(X, Y) satisfies

[(X, Y) ≥ (Y − X)
2

2_2'2
?

and hence the bound (1.27) takes the form

1 − P
(
(̄X ⊂ (Y

)
≤ |& | exp

(
−# (Y − X)2

2_2'2
?

)
,

This leads to the following result giving an estimate of the sample size which
guarantees that any X-optimal solution of the SAA problem is an Y-optimal solution
of the true problem with probability at least 1 − V.

Then for Y > 0, 0 ≤ X < Y, and V ∈ (0, 1), and for the sample size # satisfying

# ≥
2_2'2

?

(Y − X)2
ln

(
|& |
V

)
(1.29)
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it follows that
1 − P

(
(̄X ⊂ (Y

)
≤ 1 − V.

Next, we again relax the condition (1.21), and use its non-uniform counterpart:
for all b and G, H ∈ &

| 5 (H, b) − 5 (G, b) | ≤ "? (b)‖H − G‖ ? , (1.30)

and the moment-generating function Eb
[
exp

(
C · "? (b)

) ]
of "? (b) is finite valued

for all C in a neighborhood of zero. This assumption holds if (1.21) holds and
implies that the expectation Eb

[
"? (b)

]
is finite and the function 5 (G) is Lipschitz

continuous on & with Lipschitz constant Eb
[
"? (b)

]
. By Cramer’s large deviation

theorem we have that for any " ′? > Eb
[
"? (b)

]
there exists a positive constant

Z = Z (" ′?) such that
P

(
"̄? > "

′
?

)
≤ exp (−#Z) , (1.31)

where "̄? =
1
#

∑#
:=1 "? (b: ). Note that it follows from (1.30) that w.p. 1�� 5̄ (G) − 5̄ (G ′)�� ≤ "̄? ‖G − G ′‖ ? , for all G, G ′ ∈ &,

i.e., 5̄ is Lipschitz continuous on & with Lipschitz constant "̄? .
Let us set a = (Y−X)2

4" ′?
, Y′ := Y − " ′?a and X′ := X + " ′?a. Note that a > 0,

Y′ = 3Y
4 +

X
4 > 0, X′ = Y

4 +
3X
4 > 0 and Y′ − X′ = Y−X

2 > 0. Let G1, . . . , G< ∈ & be
such that for every G ∈ & exists G8 , 8 ∈ {1, . . . , <}, such that ‖G − G8 ‖ ≤ a, i.e., the
set N = {G1, . . . , G<} forms a a-net in &. We can choose this net in such a way that
Is it possible to use any ? ?

< ≤
(
d'?

a

)=
(1.32)

for a constant d > 0.
Let G1, . . . , G< ∈ & ⊆ �=? ('?) (? ≥ 1) be such that for every G ∈ & exists G8 ,

8 ∈ {1, . . . , <}, such that ‖G − G8 ‖ ? ≤ a, i.e., the setN = {G1, . . . , G<} forms a a-net
in &. We can choose this net in such a way that

< ≤
(
d'?

a

)=
(1.33)

for a constant d > 0.
If N \ (Y′ is empty, then any point of N is an Y-optimal solution of the prob-

lem (1.20). Otherwise, choose a mapping D : N \ (Y′ −→ ( and consider the sets
(̃ :=

⋃
G∈N D(G) and &̃ := N ⋃

(̃. Note that &̃ ⊂ & and |&̃ | ≤
(

2d'?
a

)=
.

Now let us replace the set & by its subset &̃. We refer to the problem (1.20) and
its empirical counterpart as a reduced one for such replacement. We have that (̃ ⊂ (,
any point of the set (̃ is an optimal solutions of the true reduced problem and the
optimal value of the true reduced problem is equal to the optimal value of the true
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(unreduced) problem (1.20). By (1.29) we have that with probability at least 1− V/2
any X′-optimal solution of the reduced empirical problem is an Y′-optimal solutions
of the reduced (and hence unreduced) true problem provided that

# ≥
8_2'2

?

(Y − X)2
= ln

(8d" ′?'?
Y − X

)
+ ln

(
2
V

)
. (1.34)

Note that the right-hand side of (1.47) is greater than or equal to the estimate

# ≥ 2f2

(Y′ − X′)2
ln

(
|2&̃ |
V

)
(1.35)

required by (1.29).
We also have by (1.31) that for

# ≥ V−1 ln
(

2
V

)
the Lipschitz constant "̄? is less than or equal to" ′? with probability at least 1−V/2.

Now let Ĝ be a X-optimal solution of the unreduced empirical problem. Then there
is a point G ′ ∈ &̃ such that ‖Ĝ − G ′‖ ≤ a, and hence 5̄ (G ′) ≤ 5̄ (Ĝ) + " ′?a. We also
have that the optimal value of the unreduced empirical problem is smaller than or
equal to the optimal value of its reduced counterpart. It follows that G ′ is a X′-optimal
solution of the reduced empirical problem, provided that "̄? ≤ " ′? Consequently,
we have that G ′ is an Y′-optimal solution of the problem (1.20) with probability at
least 1 − V/2 provided that # satisfies both inequalities (1.47) and (1.35). It follows
that

5 (Ĝ) ≤ 5 (G ′)+aEb
[
"? (b)

]
≤ 5 (G ′)+" ′?a ≤ min

G∈&
5 (G)+" ′?a+Y′ ≤ min

G∈&
5 (G)+Y

We obtain that if # satisfies both inequalities (1.47) and (1.35), then with proba-
bility at least 1− V, any X-optimal solution of the empirical problem is an Y-optimal
solution of the problem (1.47).

By setting X = Y/2 the required estimate follows.
it remains to say that d = $ (1) �

In the close setting online approach gives a better result, see also (1.17) for ? = 2.

Theorem 1.6 Assume that (1.21) is satisfied and 5 (G, b) is convex in G in &. Then
for Ḡ#

(
{b: }#

:=1

)
(see (1.18)) generated by the proper modification of (1.14):12

# = Õ
(
"2
?'

2
?

Y2 ln
(

1
V

))
, if ? ∈ [1, 2],

12 We will talk about «proper» (Mirror Descent) modification in the next chapter in more details.
Note that for ? ≥ 2 it is proper to use (1.14). The factor =1−2/? appears since the diameter of
�=? ('?) in the 2-norm is O

(
=1/2−1/?'?

)
.
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# = O
(
=1−2/?"

2
2'

2
?

Y2 log
(

1
V

))
, if ? > 2.

These bounds are optimal up to logarithmic factors in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
.13

It seems that online setting (e.g. for ? = 2) is better than offline in the sample
complexity for convex 5 (G, b) in G. In the next section we show that the gap factor
= in the sample complexity bounds between online and offline approaches can be
eliminated by the proper regularization.

1.2.2 Strongly convex case and regularization

If 5 (G, b) is `?-strongly convex in G in the ?-norm (? ≥ 1), that is for all b and
G, H ∈ &:

5 (H, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), H − G〉 +
`?

2
‖H − G‖2? , (1.36)

then Theorem 1.5 can be improved.

Theorem 1.7 Assume that (1.21) and (1.36) are satisfied. Then for

Ḡ#
X,V/2

(
{b: }#

:=1

)
, X = Y2`?

8" 2
?
and Ḡ#

(
{b: }#

:=1

)
generated by the proper (restarted14 Mirror Descent) modification of (1.14):

# = Õ
©«
"2
?

`?Y
log

©«
log

(
"2
?/(`?Y)

)
V

ª®®¬
ª®®¬ , ? ∈ [1, 2] . (1.37)

This bound is optimal to up a logarithmic factor in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
. Moreover, this bound corresponds (1.12) and (1.19)

when ? = 2 and the bound on X derived from the condition that the first term in RHS
of (1.12) equals Y/2. The bound on X also cannot be improved up to a numerical
constant.

Proof For simplicity, we prove (1.37) only in terms of expectation, rather than high
probability bounds.

Nazary, please add the proof of the Theorem based on [111] (https://home.
ttic.edu/~nati/Publications/nonlinearTR.pdf) Section 4 and https:

13 We discuss it also in more details in the next chapter. Also in the next chapter we mention that in
the non-convex case online approach gives much worse results # ∝ Y−(=+1) , which is also optimal
bound for non-convex class of 5 (G, b ) . Note that the bound on # ∝ =1−2/?" 2

2 '
2
? Y
−2 in the

regime ? > 2 can be refined in the dimension-free case # . = : # ∝ " ?
? '

?
? Y
−? [85].

14 See the proof of Theorem 1.10 for ? = 2 and the next chapter in the general case.

https://home.ttic.edu/~nati/Publications/nonlinearTR.pdf
https://home.ttic.edu/~nati/Publications/nonlinearTR.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
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//www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf p. 508.
Note that the proof of the theorem it’s sufficient to describe in terms of expectation,
rather that high probability bounds. The proof is based on the concept of uniform
stability [16]. Denote

5̄ (8) (G) = 1
#

#∑
:≠8

5 (G, b: )

the empirical average without the 8-th sample and let Ḡ (8) = argmin
G∈&⊆R=

5̄ (8) (G) be its

minimizer. We first establish that the empirical minimizer is 2" 2
?

`?#
uniformly stable,

i.e. that | 5 (Ḡ, b) − 5 (Ḡ (8) , b) | ≤ 2" 2
?

`?#
for all samples and all b.

To do so, we first calculate:

5̄ (8) (Ḡ (8) ) − 5̄ (8) (Ḡ) = 5 (Ḡ (8) , b8) − 5 (Ḡ, b8)
#

+
∑
8≠ 9

(
5 (Ḡ (8) , b8) − 5 (Ḡ, b8)

)
#

=
5 (Ḡ (8) , b8) − 5 (Ḡ, b8)

#
+ # − 1

#

(
5̄ (8) (Ḡ (8) ) − 5̄ (8) (Ḡ)

)
≤

�� 5 (Ḡ (8) , b8) − 5 (Ḡ, b8)��
#

≤
"?

#
‖Ḡ (8) − Ḡ‖, (1.38)

where the first inequality follows from the fact that Ḡ (8) is the minimizer of 5̄ (8) (G)
and in the second inequality we use the Lipschitz property (1.21). But from strong
convexity of 5̄ (G) and the fact that Ḡ is the minimizer of 5̄ (G) we also have that
`?
2 ‖Ḡ

(8) − Ḡ‖2 ≤ 5̄ (Ḡ (8) ) − 5̄ (Ḡ). Combining this with (1.38) we obtain ‖Ḡ (8) − Ḡ‖ ≤
2"?

`?#
and from Lipschitz continuity (1.21) we get

��� 5 (Ḡ (8) , b) − 5 (Ḡ, b)��� ≤ 2"2
?

`?#
.

Now, from [16, p.508] we have

Eb
[
5 (Ḡ) − 5̄ (Ḡ)

]
≤

4"2
?

`?#

with Ḡ (+) = argmin
G∈&⊆R=

1
#+1

∑#
:=1 5 (G, b: ) + 1

#+1 5 (G, b
′)

https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
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E/ , b ′
[
5 (Ḡ, b ′) − 5̄ (Ḡ)

]
=

1
#

#∑
:=1
E/ , b ′

[
5 (Ḡ, b ′) − 5 (Ḡ, b: )

]
=

1
#

#∑
:≠8

E/ , b ′
[
5 (Ḡ, b ′) − 5 (Ḡ (+) ) + 5 (Ḡ (+) ) − 5 (Ḡ, b: )

]
since E/ , b ′ 5 (Ḡ (+) , b ′) = E/ , b ′ 5 (Ḡ (+) , b: )

=
1
#

#∑
:=1
E/ , b ′

[
5 (Ḡ, b ′) − 5 (Ḡ (+) , b ′) + 5 (Ḡ (+) , b: ) − 5 (Ḡ, b: )

]
≤

4"2
?

`? (# + 1) ≤
4"2

?

`?#
(1.39)

Adding Eb
[
5̄ (G∗) − 5 (G∗)

]
= 0 with G∗ = argmin

G∈&⊆R=
5 (G) to the left-hand side and

using the fact that Ḡ is the minimizer of 5̄ (G):

4"2
?

`?#
≥ Eb

[
5 (Ḡ) − 5̄ (Ḡ)

]
= Eb [ 5 (Ḡ) − 5 (G∗)] + Eb

[
5̄ (G∗) − 5̄ (Ḡ)

]
≥ Eb [ 5 (Ḡ) − 5 (G∗)] . (1.40)

Due to the fact that the empirical objective 5̄ is strongly convex, any approximate
empirical minimizer must be close to Ḡ, and due to the fact that the expected objective
� is Lipschitz-continuous any vector close to Ḡ cannot have a much worse value than
Ḡ. We therefore have, that with probability at least 1 − V, for all G ∈ &:

5 (G) − 5 (G∗) = 5 (G) − 5 (Ḡ) + 5 (Ḡ) − 5 (G∗) ≤ "? ‖G − Ḡ‖ + 5 (Ḡ) − 5 (G∗)

≤

√
2"2

?

`?

√
5̄ (G) − 5̄ (Ḡ) + 5 (Ḡ) − 5 (G∗) ≤

√
2"2

?

`?
X + 5 (Ḡ) − 5 (G∗). (1.41)

Taking expectation of (1.41) and using (1.40) and using that G is a X solution of
empirical problem we obtain:

5 (G) − 5 (G∗) ≤

√
2"2

?

`?
X +

4"2
?

`?#
.

Setting X = Y2`?
8" 2

?
and # = 8" 2

?

Y`?
, ? ∈ [1, 2] we have that we have 5 (G) − 5 (G∗) ≤

Y.
cite the LD result

We emphasise that in Theorem 1.5 X ' Y, but in Theorem 1.7 X ' Y2`?
" 2
?

and the last
bound cannot be weakened!
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Based on Theorem 1.7 one can derive the result that improve Theorem 1.5 in the
convex case (`? ' 0). Assume for the clarity that ? = 2.

Lemma 1.1 (Tiknonov’s regularization)Consider regularized stochastic optimiza-
tion problem

min
G∈&

[
5` (G) := Eb 5 (G, b) +

`

2
‖G‖22

]
(1.42)

with ` = Y/'2
2. Assume that

5` (G̃) −min
G∈&

5` (G) ≤
Y

2
.

Then
5 (G̃) −min

G∈&
5 (G) = 5 (G̃) − 5 (G∗) ≤ Y.

Proof Indeed,

5 (G̃) − 5 (G∗) ≤ 5` (G̃) −
(
5` (G∗) −

`

2
‖G∗‖22

)
≤ 5` (G̃) −min

G∈&
5` (G) +

`

2
'2

2 ≤
Y

2
+ Y

2
= Y.

�

The combination of Theorem 1.7 and Lemma 1.1 allow to improve the result of
Theorem 1.5 in the convex case.

Theorem 1.8 (the role of the regularization) Assume that (1.21) is satisfied and
5 (G, b) is convex in G in &. Then for Ḡ#

X,V/2

(
{b: }#

:=1

)
to be a

(
X = Y3

8" 2
2 '

2
2
,
V

2

)
-

solution of the empirical version of (1.42):

min
G∈&

[
1
#

#∑
:=1

5 (G, b: ) + Y

2'2
2
‖G‖22

]
, (1.43)

we have:

# = Õ
(
"2

2'
2
2

Y2 log
(

log ("2'2/Y))
V

))
.

Moreover, in the general case ? ∈ [1, 2] the described above technique (with proper
regularization) allows to obtain the bounds on # that correspond to the bounds in
Theorem 1.6 up to logarithmic factors.

To conclude, from the Theorem 1.8 we derive that in the sample complexity bounds
online approach and offline approach (with proper regularization in the convex case)
are equivalent up to a logarithmic factors.
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1.2.3 s-growth condition

We say that 5 (G) := Eb 5 (G, b) satisfies B-growth condition (B ≥ 1) on &2Y if for all

G ∈ &2Y := {G ∈ & : 5 (G) ≤ 5 (G∗) + 2Y} :

5 (G) − 5 (G∗) ≥ `?,B ‖G − G∗‖B? , (1.44)

where G∗ is a projection of G (in the ?-norm) on the set of the solutions of (1.9).
We relax the condition (1.21) as follows: for all G, H ∈ & sub-Gaussian variance

of 5 (H, b) − 5 (G, b) − ( 5 (H) − 5 (G)) bounded from above by _2‖H − G‖2? , i.e. for all
C ∈ R:

Eb [exp (C · ( 5 (H, b) − 5 (G, b) − ( 5 (H) − 5 (G))))] ≤ exp
(
C2_2‖H − G‖2?/2

)
.

(1.45)
Note that if (1.21) holds, then _2 ≤ 2"2.

Theorem 1.9 Assume that 5 (G, b) is convex in G in Q and (1.44), (1.45) are satisfied.
Then for Ḡ#

Y/2,V/2

(
{b: }#

:=1

)
:

# = O
(

_2
?

`
2/B
?,BY

2(B−1)/B

(
= log

(
"?'?,Y

Y

)
+ log

(
1
V

)))
, (1.46)

where '?,Y is the diameter of &2Y in the ?-norm. In particular, for B = 1 '?,Y ≤
4Y/`?,1. Thus in the case of «sharp minimum» (B = 1) # does not depend on Y at
all.

The bound (1.50) is optimal up to a logarithmic factor.

Proof Nazary, please add the proof of the Theorem based on [114] (https://
cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/
SPbook.pdf) Section 5.3.2.

It was assumed in the proof of the Theorem 1.5 that the set & has a finite
diameter, i.e., that & is bounded. For convex problems, this assumption can be
relaxed. Assume that the problem is convex, the optimal value min

G∈&
5 (G) of the true

problem is finite, and for some 0 > Y the set (0 has a finite diameter '0? . (Recall
that (0 := G ∈ & : 5 (G) ≤ min

G∈&
5 (G) + 0.) We refer here to the respective true and

empirical problems, obtained by replacing the feasible set & by its subset (0, as
reduced problems. Note that the set (Y , of Y-optimal solutions, of the reduced and
original true problems are the same. Let # be an integer satisfying the inequality
from Theorem 1.5, e.g.

# ≥ max

{
8_2'2

?

(Y − X)2
= ln

(8d" ′?'?
Y − X

)
+ ln

(
2
V

)
, V−1 ln

(
2
V

)}
. (1.47)

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
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with '? replaced by '0? . Then, under the assumptions of Theorem 1.5, we have that
with probability at least 1 − V all X-optimal solutions of the reduced SAA problem
are Y-optimal solutions of the true problem. Let us observe now that in this case
the set of X-optimal solutions of the reduced SAA problem coincides with the set of
X-optimal solutions of the original SAA problem. Indeed, suppose that the original
SAA problem has a X-optimal solution G∗ ∈ & \ (0 . Let Ḡ ∈ ArgminG∈(0 5̄ (G),
such a minimizer does exist since Ḡ ∈ (Y and (0 is compact and 5̄ (G) is real valued
convex and hence continuous. Then Ḡ ∈ (Y and 5̄ (G∗) ≤ 5̄ (Ḡ) + X. By convexity
of 5̄ (G) it follows that 5̄ (G) ≤ max

{
5̄ (Ḡ), 5̄ (G∗)

}
for all G on the segment joining

Ḡ and G∗. This segment has a common point Ĝ with the set (0 \ (Y . We obtain that
Ĝ ∈ (0 \ (Y is a X-optimal solutions of the reduced SAA problem, a contradiction.

That is, with such sample size #∗ we are guaranteed with probability at least 1− V
that any X-optimal solution of the SAA problem is an Y-optimal solution of the true
problem. Also, assumptions (1.30) and (1.24) should be verified for G, G ′ in the set
(0 only.

Consider further 0 = 2Y and suppose that the set ( of optimal solutions of the
true problem is nonempty. Then it follows from the proof of Theorem 1.5 that it
suffices to verify assumption (1.24) only for every G ∈ & \ (Y′ and G ′ := D(G),
where D : & \ (Y −→ ( and Y′ := 3

4Y +
X
4 . If the set ( is closed, we can use,

for instance, a mapping D(G) assigning to each G ∈ & \ (Y′ a point of ( closest
to G. If, moreover, the set ( is convex and the employed norm is strictly convex
(e.g., the Euclidean norm), then such mapping (called metric projection onto () is
defined uniquely. Then for such G and G ′ we we can bound ‖G − G ′‖ ? in (1.28) by
‖G − G ′‖ ? ≤ supG∈&\(Y′ ,G′∈( ‖G − G ′‖ ? . The growth condition (1.44) implies that

( = {G∗} and that for any G ∈ &2Y the inequality ‖G − G∗‖ ? ≤
(

2Y
`?,B

)1/B
holds.

Since the problem is convex we can use&2Y instead of& to reproduce step (1.33).
Reproducing the proof of Theorem 1.5 with the above refinements we obtain from

the result of the theorem.

Optimality of (1.50)

Consider a simple example for ? = 2, & = �=2 (1):

5 (G, b) = ‖G‖B2 − B〈b, G〉,

b ∼ N(0, f2�=), where �= is the identity = × = matrix. Hence 5 (G) = ‖G‖B2, G
∗ = 0,

`2,B = 1 in (1.44) and

5 (H, b) − 5 (G, b) − ( 5 (H) − 5 (G)) = B〈b, H − G〉

has N
(
0, B2f2‖H − G‖22

)
-distribution. Therefore _2 = B2f2 in (1.45).

Note also that
5̄ (G) = ‖G‖B2 − B〈b̄# , G〉,
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where b̄# ∼ N(0, f2#−1�=). For this problem we can explicitly find the minimizer
of the empirical loss

Ĝ# ∈ argmin
G∈&

5̄ (G) = b̄#

‖b̄# ‖12
,

where

1 =

{
1, if ‖b̄# ‖2 > 1
B−2
B−1 , else.

Since 5 (G) = ‖G‖B2, it follows that

5 (Ĝ# ) − 5 (G∗) ≤ Y

is equivalent to
‖b̄# ‖

B
B−1
2 ≤ Y

for sufficiently small Y. Combining this with b̄# ∼ N(0, f2#−1�=) we can get that
for

P
(
5

(
Ĝ#

)
− 5 (G∗) ≤ Y

)
= P b̄#∼N(0,f2# −1�=)

(b̄#  B
B−1
2 ≤ Y

)
≥ 0.7

it is required that

# >
=f2

Y2(B−1)/B . (1.48)

The lower bound (1.48) corresponds to (1.50) when `2,B = 1 and B is finite. Note
that when B = 2 and `2,2 = `2 ≠ 1 (1.48) can be clarified as follows

# ≥ =f
2

`2Y
.

The last lower bound seems to be strange enough (=-factor in the lower bound looks
wrong) due to the upper bound from (1.37). But there is no contradiction here even
with the strengthened upper bound from (1.37)

# = Õ
(
"̃2

2
`2Y

)
,

since "̃2
2 := Eb

[
"2 (b)2

]
= =B2f2,15 where "2 (b) is defined with ? = 2 according

to the following: for all b and G, H ∈ &:

| 5 (H, b) − 5 (G, b) | ≤ "? (b)‖H − G‖ ? . (1.49)

15 In (1.37) it is assumed that there exists such "2 that "2 ( b ) ≤ "2. Here we relax the notion of
"2 to "̃2.
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Theorem 1.10 Assume that 5 (G, b) is convex in G in Q, 5 (G) := Eb 5 (G, b) satisfies
A-growth condition in & and (1.21) is satisfied. Then for Ḡ#

(
{b: }#

:=1

)
generated by

the proper (restarted Mirror Descent) modification of (1.14):

# = Õ
(

"2
?

`
2/B
?,BY

2(B−1)/B

)
, ? ∈ [1, 2] . (1.50)

This bound is optimal up to logarithmic factor in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
.

Proof For clarity we consider only the euclidean case ? = 2. Since 5 (G) :=
Eb 5 (G, b) satisfies B-growth condition in &, it follows from (1.17) that with proba-
bility at least 1 − V/^

`2,B ‖Ḡ# − G∗‖B2 ≤ 5 (Ḡ# ) − 5 (G∗) = O
(
"2‖G1 − G∗‖2

√
log (^/V)

√
#

)
,

where Ḡ# is calculated according to (1.18) based on (1.14). If we choose

# = O ©«
"2

2 log (^/V)
`2

2,B ‖G1 − G∗‖2(B−1)
2

ª®¬ ,
then

‖Ḡ# − G∗‖B2 =
1
2
‖G1 − G∗‖B2.

The idea of the restart technique is to put

G1 := Ḡ#

and to restart algorithm (1.14). By denoting '2,; the distance between the starting
point and the solution G∗ at ;-th restart, we could guarantee that 'B2,;+1 = 'B2,12−; .
Similarly, #; is a number of iteration at ;-th restart. Since we would like to solve
the problem with probability at least 1 − V and with accuracy Y, the number of the
restarts ^ is determined from

"2'2,^+1
√

log (^/V)
√
#^+1

' `2,A'
B
2,^+1 = `2,A'

B
2,12−(^+1) ' Y.

Therefore the total number of samples (iterations) is
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;=1
O ©«

"2
2 log (^/V)
`2

2,B'
2(B−1)
2,;

ª®¬ =
"2

2 log (^/V)
`2

2,B'
2(B−1)
2,1

∑̂
;=1
O

(
2

2(B−1)
B

;
)

= O ©«
"2

2 log (^/V)
`2

2,B'
2(B−1)
2,1

2
2(B−1)
A
(^+1)ª®¬

= O
©«
"2

2 log (^/V)
`2

2,B'
2(B−1)
2,1

(
`2,B'

B
2,1

Y

) 2(B−1)
A ª®®¬

= O ©«
"2

2 log (^/V)
`

2/B
2,B Y

2(B−1)/B
ª®¬ .

�

1.3 Concluding remarks

For a better structure of this chapter we have collected various comments that clarify
the results given above (but have not a primal interest) in this (separate) section at the
end of the chapter. In more details most of this comments will be further developed
in the next chapters.

1.3.1 Weakening of uniform Lipschitz condition in online approach

An important remark concerns online approach is that we can significantly relax
uniform Lipschitz continuity property (1.21), assuming that "? (b) in (1.49) has
a finite second moment Eb

[
"? (b)2

]
< ∞. In this case, all the bound remain the

same up to a logarithmic factor, see [81, 45] for ? = 2, and [83, 57] for ? ≥ 1, but
for the convergence in expectation. If we have only Eb

[
"? (b)1+U

]
< ∞, where

U > 0 then in the dimension-free case (# . =) the expected # ∼ Y−max{2, ?} will
get worse # ∼ Y−(1+U?)/U? , where U? = min

{
1, U, (? − 1)−1} [85, 128]. Similarly,

in the strongly convex case (B-growth condition) and in the case # & =. Note that
high-probability bound analysis has been developed in this generality mainly for the
Euclidean proximal setup with Eb

[
"2 (b)2

]
< ∞.

For offline approach some particular results in this direction are also known, see
the references in [114].
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1.3.2 Weakening of the convexity condition

The principal difference between online and offline approach is that for optimal
results in offline approach the convexity of 5 (G, b) in G for all b is typically required. It
was shown in [109] that for any regularizer there is a stochastic optimization problem
with convex � (G) such that regularized empirical loss minimization approach fails
to learn. But for online approach the convexity of � (G) is enough for the same rates
of convergences in terms of convergence in expectation [83, 57].

In Section 1.2.1 we have observed that offline approach in non-convex case
required # ∝ =Y−2 samples despite the fact that online approach in non-convex case
required # ∝ Y−(=+1) samples. Moreover, under different additional assumptions
[110, 101, 8] (finite VC-dimension e.t.c.) the dependence of = in offline approach
# ∝ =Y−2 can be relaxed.16 So it seems that offline approach is much better than
online. In terms of the sample complexity (number of different samples of b) it
really is. But at the end in offline approach we should solve empirical loss (risk)
minimization problem that would be non-convex. To solve this problem we required
# ∝ =Y−(=+1) stochastic gradient oracle calls17 that corresponds (up to a factor =) to
online approach.

Some results that werementioned in the previous sections can be generalized if we
replace (strong) convexity assumption by quasi-convexity or some growth condition
[82] or Polyak–Lojasiewicz(–Lezansky) condition [60, 11]. For example, online and
offline approaches under Polyak–Lojasiewicz condition are considered in [3] and
[73].

1.3.3 How to make online approach adaptive?

To answer this question, we appeal to SGD (1.14)

G:+1 = c&
(
G: − W:∇G 5 (G: , b: )

)
,

with
W: ≡

'

"
√
#
.

The problem is that the stepsize policy requires the knowledge of parameters ' and
" . Moreover, this stepsize policy in not adaptive in # , i.e., we should know the
desired # in advance. The last problem was solved in [83] by changing

W: ≡
'

"
√
:
.

16 Factor = is replaced by the «efficient» dimension, which could be much smaller.
17 This bound can be improved a little bit by using the fact that all the terms in the sum (the empirical
loss) have the same distribution. But this improvement will have a minor effect on the total oracle
complexity.
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This stepsize policy leads to the same convergence rate up to a logarithmic factor.
This factor can be eliminated by the Nesterov’s dual extrapolations scheme [88].
The problem of unknown "-parameter was further solved in [24, 25], where it was
proved that for

W: ≡
'√∑:

9=1 ‖∇G 5 (G 9 , b 9 )‖22
the convergence rate does not change up to a numerical constant factor. SGD with
this stepsize policy is known as AdaGrad. The works [83, 24] largely determined the
development of modern stochastic optimization. For example, one of the most cited
stochastic optimization algorithm after SGD is Adam [61, 102], which is based on
AdaGrad. This algorithm and its variations are one of the main tools to train Deep
Neural Networks [70, 123].

Although in practice different adaptive algorithms show themselves well in the
theory typically they converge in the worst case not better than non-adaptive ana-
logues [9, 34].

1.3.4 Overparametrization

In practice for the strongly convex problems ( 5 (G) is `-strongly convex in the 2-
norm):

min
G∈R=

[
5 (G) := Eb 5 (G, b)

]
with uniformly Lipschitz continuous gradient: for all b and G, H ∈ R=:18

‖∇G 5 (H, b) − ∇G 5 (G, b)‖2 ≤ !‖H − G‖2 (1.51)

it was observed that simple stochastic gradient method (SGD):

G:+1 = G: − W∇G 5 (G: , b: )

converges with linear rate in the vicinity of the solution G∗ [79]. That was also
confirmed in the theory

E{b :}#:=1

[
|G#+1 − G∗‖22

]
≤ ‖G1 − G∗‖22 (1 − W`)

# + 2Wf2
∗

`
, (1.52)

where the stepsize W ≤ 1/(2!) and

f2
∗ = Eb

[
‖∇G 5 (G∗, b) − ∇ 5 (G∗)‖22

]
= Eb

[
‖∇G 5 (G∗, b)‖22

]
,

18 As we will see in the next chapters it sufficiently to consider Lipschitz-type conditions only
in some balls centered at starting point and radius determined (up to a logarithmic factor) by the
distance between starting point and the closest to this point solution.
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since ∇ 5 (G∗) = 0.
Indeed, from Section 1.1.2:

‖G:+1 − G∗‖22 ≤ ‖G
: − G∗‖22 − 2W〈∇G 5 (G: , b: ), G: − G∗〉 + W2‖∇G 5 (G: , b: )‖22.

Taking the conditional expectation in b: under fixed G: and using that

Eb
[
‖∇G 5 (G, b)‖22

]
≤ 2Eb

[
‖∇G 5 (G, b) − ∇G 5 (G∗, b)‖22

]
+ 2Eb

[
‖∇G 5 (G∗, b)‖22

]
≤ 4!Eb [ 5 (G, b) − 5 (G∗, b) − 〈∇G 5 (G∗, b), G − G∗〉] + 2f2

∗

= 4! ( 5 (G) − 5 (G∗)) + 2f2
∗ ,

we obtain19

Eb :
[
‖G:+1 − G∗‖22 |G

:
]
≤ ‖G: − G∗‖22 − 2W〈∇ 5 (G: ), G: − G∗〉

+ W2
(
4!

(
5 (G: ) − 5 (G∗)

)
+ 2f2

∗

)
≤ ‖G: − G∗‖22 − 2W

(
5 (G: ) − 5 (G∗) + `

2
‖G: − G∗‖22

)
+ 4!ℎ2

(
5 (G: ) − 5 (G∗)

)
+ 2W2f2

∗ .

Rearranging the terms in the RHS and taking the expectation in G: we come to the
following:

E{b 9}:9=1

[
‖G:+1 − G∗‖22

]
≤ (1 − W`) E{b 9}:−1

9=1

[
‖G: − G∗‖22

]
+ 2W (1 − 2!W)

(
E{b 9}:−1

9=1

[
5 (G: )

]
− 5 (G∗)

)
+ 2W2f2

∗

≤ (1 − W`) E{b 9}:−1
9=1

[
‖G: − G∗‖22

]
+ 2W2f2

∗ ,

if W ≤ 1/(2!). So we come to (1.52) by induction.
The overparametrization effect appears if f2

∗ is small, that is ∇G 5 (G∗, b) ' 0 for
almost all b.

For example if we consider offline approach

min
G∈R=

[
5̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]

and reformulate this problems as

min
G∈R=

[
5̄ (G) := E: 5 (G, b: ),

]
(1.53)

19 The last inequality uses the weaker variant of `-strong convexity assumption of 5 (G): for all
G ∈ R=

5 (G∗) ≥ 5 (G) + 〈∇ 5 (G) , G∗ − G 〉 + `
2
‖G∗ − G ‖22.
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where P (: = ;) = 1/# for ; = 1, ..., # . In this case ! = max;=1,...,# !; , where !; is
Lipschitz gradient constant of 5 (G, b;) in G. The variance is

f2
∗ =

1
#

#∑
:=1
‖∇G 5 (G∗, b: )‖22.

If ∇G 5 (G∗, b: ) ' 0, which could be possible due to the same stochastic nature of all
the terms 5 (G, b: ), then for all : = 1, ..., # we have overparametrization and effect
of linear convergence of SGD to a small vicinity of the solution.

Although overparameterized problems have attracted considerable attention in
recent years, the results available here are still far from theory we have described in
the previous sections. For example, in offline approach with f2

∗ ' 0 we have only
[73]:

E{b :}#:=1

[
|Ĝ# − G∗‖22

]
∝ 1
`2#2 ,

rather than we have in online approach with proper stepsize policy W = 1/(2!):

E{b :}#:=1

[
|G#+1 − G∗‖22

]
∝

(
1 − `

2!

)#
.

Little is known about overparameterization in a non-Euclidean proximal setup.

1.3.5 Acceleration and batching for smooth convex optimization
problems in online approach

Consider smooth convex optimization problem

min
G∈&

5 (G), (1.54)

where for all G, H ∈ &:

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ !‖H − G‖2. (1.55)

Accelerated method [89, 69, 76] allows to solve smooth convex optimization prob-
lems with the rate

5 (G# ) − 5 (G∗) . !'2

#2 ,

where '2 = ‖G1−G∗‖22 and G
∗ is the closest solution (in 2-norm) to G1 if the set of the

solutions contains more than one point. Below we describe how to build accelerated
batch-parallelized algorithm that significantly outperform SGD in the number of
subsequent iterations.

First of all, following [22, 31, 29] we introduce the notion of (X1, X2, !)-oracle.
We say that for the problem (1.54) we have an access to (X1, X2, !)-oracle at a point
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G if we can evaluate a vector ∇X 5 (G) such that, for all G, H ∈ &,

−X1 ≤ 5 (H) − 5 (G) − 〈∇X 5 (G), H − G〉 ≤
!

2
‖H − G‖22 + X2,

where EX1 = 0 (X1 is independently taken at each oracle call), EX2 ≤ X. Note
that the left inequality corresponds to the definition of X1-(sub)gradient [95] and
reduces to the convexity property in the case X1 = 0. In this case the LHS holds with
∇X 5 (G) = ∇ 5 (G). The right inequality in the case when X2 = 0 is a consequence20
of (1.55). Let us consider an algorithm A(!, X1, X2) that converges with the rate21

E 5 (G# ) − 5 (G∗) = O
(
!'2

#U
+ # Z X

)
. (1.56)

The batching technique, applied to the problem (1.54) with !-Lipschitz gradient
(in 2-norm), is based on the use of the mini-batch stochastic approximation of the
gradient

∇X 5 (G) =
1
A

A∑
9=1
∇G 5 (G, b 9 )

in A(!, X1, X2), where {b 9 }A9=1 are sampled independently and A is an appropriate
batch size. The choice of A is based on the following relations

〈∇X 5 (G) − ∇ 5 (G), H − G〉 ≤
1

2!
‖∇X 5 (G) − ∇ 5 (G)‖22 +

!

2
‖H − G‖22,

E{b 9 }A
9=1

[
‖∇X 5 (G) − ∇ 5 (G)‖22

]
≤ f

2

A
,

where f2 is the variance of unbiased stochastic gradient ∇G 5 (G, b), which is avail-
able. Hence, if

X ≤ 1
2!

max
G∈&
E{b 9 }A

9=1

[
‖∇X 5 (G) − ∇ 5 (G)‖22

]
,

i.e. X = f2/(2!A), we have thatA(2!, X1, X2) converges with the rate given in (1.56).
From (1.56) we see that to obtain

E 5 (G# ) − 5 (G∗) ≤ Y

it suffices to take

20 Note, that the right inequality in the case when X2 = 0 is not equivalent to (1.55), but is typically
sufficient to obtain optimal (up to constant factors) bounds on the rate of convergence of different
methods [126].
21 # is a number of iterations which up to a constant factor is equal to the number of (X1, X2, !)-
oracle calls. We can consider more specific rates of convergence for problems with additional
structure and develop batching technique in a similar way.
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# = O
((
!'2

Y

)1/U)
and A = O

(
f2#V

!Y

)
.

In particular, for all known Accelerated gradient methods we have that U = 2, Z = 1
[22, 31]. In this case, we obtain the complexity bounds for batched Accelerated
gradient methods (assume that f2 is such that ) ≥ # , otherwise we put ) := #):

# = O
(√
!'2/Y

)
, A = O

(
f2'/

(√
!Y3/2

))
, ) = # · A = O

(
f2'2/Y2) .

It is obvious that we can calculate batch in a parallel manner. This reduces
the number of subsequent iterations from # ∝ Y−2 for standard SGD with small
stepsize (see Section 1.1.2) and # ∝ Y−1 for SGD with special stepsize policy
W ' min {1/!, 1/(`#)} [124] (see Section 1.3.4) to the optimal rate # ∝ Y−1/2

[85, 133]. Recently [131] this result was generalized to overparametrized problems,
see Section 1.3.4.

The described above batching technique is very important and universal tech-
nique, which allows to build (optimal) stochastic algorithms based on the (optimal)
deterministic algorithms and their analysis of convergence with inexact oracle. We
mention here only the two most recent examples. In [40] batching technique was
successfully applied in gradient-free optimization. In [77] batching technique was
successfully applied for distributed strongly convex-concave saddle-point problems
with different constants of strong convexity and strong concavity.

Note that the described technique can be further generalized to strongly convex
problems (problems with B-growth condition) and non-Euclidean proximal setup
[32, 44].

1.3.6 Sum-type problems and offline approach

At the very end of the offline approach we should solve the empirical loss (risk)
minimization problem

min
G∈&

[
5̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
. (1.57)

For clarity, we assume that 5 (G, b) is `-strongly convex and "-Lipscitz continuous
in G in 2-norm, see (1.36), (1.21). According to Theorem 1.7 # = Õ

(
"2/(`Y)

)
and we should solve (1.57) with the accuracy X ' Y2`/"2. Unfortunately, without
additional assumptions on the smoothness of 5 (G, b) the complexity of this problem
(the number of ∇G 5 (G, b: ) calculations) is Õ

(
"2/(`X)

)
[85]. That is much worse

than # . If we additionally assume that 5 (G, b) has !-Lipschitz continuous gradient in
G in the 2-norm, see (1.51), then we can apply batch-parallelization and acceleration
in the number of subsequent iterations, see Section 1.3.5. But this trick does not
solve the problem of oracle complexity. We still require Õ

(
"2/(`X)

)
calculations

of ∇G 5 (G, b: ). It seems that we come to some contradiction. Offline approach seems
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to be worse everytime than online one in terms of the oracle complexity. Fortunately,
this is not the case. There exist randomized Variance Reduced (VR) algorithms (see,
e.g. [132, 69, 76]) that allow to solve (1.57) (with accuracy X) with the complexity:22

Õ
((
# +

√
#
!

`

)
log

(
Δ 5

X

))
. (1.58)

Under the natural assumption !/` . # ' "2/(`Y), i.e.23 ! . "2/Y this complex-
ity coincides with # up to a logarithmic factor.

Moreover, for many concrete problems (e.g. Soft-SVM, see Section 1.1.1) we can
efficiently reduce originally non-smooth problems to smooth one [5] and apply the
VR algorithms.

The modern theory of VR methods is well developed, see e.g. [69]. For example,
it includes non-Euclidean proximal setup.

In the core of VR methods lies a very simple idea, which goes back to Monte
Carlo theory. Instead of stochastic gradient ∇G 5 (G, b) it is proposed to consider the
reduced one

∇̃G 5 (G, b) = ∇G 5 (G, b) − ∇G 5 (Ĝ# , b),

where Ĝ# is the solution of (1.57). Note that with stochastic gradient we have
overparametization effect ∇̃G 5 (Ĝ# , b) = 0 (for all b) and therefore we can expect
a linear convergence. Unfortunately in this form VR trick is not practical, since
it is required to know Ĝ# . The proper correction of the trick consist in replacing
∇G 5 (G: , bC (:) ) (where C (:) is an index that equally likely and independently selected
among 1, ..., # at :-th iteration) with

∇̃G 5 (G: , bC (:) ) := ∇G 5 (G: , bC (:) ) − ∇G 5 (Ḡ: , bC (:) ) + ∇ 5̄ (Ḡ: ),

where Ḡ: periodically updated as Ḡ: := G: according to the different policies [69, 67].
With this stochastic gradient we may also expect overparametrization along with the
convergence G: → Ĝ# . Indeed,

Eb C (:)
[
‖∇̃G 5 (G: , bC (:) )‖22

]
. !

(
5̄ (Ḡ: ) − 5̄ (Ĝ# )

)
→ 0 (1.59)

along with Ḡ: → Ĝ# .

22 This bound is optimal [132, 69], i.e. there are no algorithms that work only with ∇G 5 (G, b : )
and has a better complexity.
23 One can always achieve this condition by smoothing a non-smooth problem. In this case ! '
" 2/Y [87, 132].
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1.3.7 Composite optimization

From the previous sections we have known that regularizers in the empirical loss
(risk) minimization approach play an important role. Sometimes this regularizers
spoil the properties of the problem, e.g. ‖G‖1-regularizer in LASSO makes the
problem non-smooth, see Section 1.1.1. We can solve this issue by using composite
optimization approach. Let us remind that standard SGD (1.14) has a following
structure:

G:+1 = c&
(
G: − W:∇G 5 (G: , b: )

)
= arg min

G∈&

{
〈∇G 5 (G: , b: ), G − G:〉 +

1
2W:
‖G − G: ‖22

}
.

If the stochastic optimization problem is regularized (i.e. has composite term):

min
G∈&

[
Eb [ 5 (G, b)] + ℎ(G)

]
.

we could correct the described procedure as follows [136]:

G:+1 = arg min
G∈&

{
〈∇G 5 (G: , b: ), G − G:〉 +

1
2W:
‖G − G: ‖22 + ℎ(G)

}
.

The iteration complexity does not change. But the auxiliary (projection) problem
becomes more difficult. Fortunately, for some concrete examples (e.g. LASSO) the
auxiliary problem almost retains its complexity. In this case composite term is called
«proximal-friendly». The same holds true for Accelerated batched algorithms [23]
and VR algorithms [69].

In the case of non proximal-friendly composite terms it happens that we can split
the oracle complexities for two terms [69, 64], see also Section 1.3.9. This turned
out to be an extremely useful option in distributed optimization [69, 46, 107, 64].

Composite optimization was firstly developed in deterministic setup [10, 26, 86].
Moreover, in [84, 125] it was considered more general «model setup» with 5 (G) :=
min { 51 (G), ..., 5< (G)} and composite optimization as particular cases. Under some
assumptions this model setup can be further developed on stochastic optimization
problems [31].

1.3.8 Overfitting and early stopping for offline approach

Let us return to the empirical problem (1.57):

min
G∈&

[
5̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
.
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In Section 1.2.2we describe regularization trick, that allows to align sample complex-
ities for offline and online approaches for convex, but non-strongly convex problems.
Another (a little artificial) way to align sample complexities in both of the approaches
is to change the way of obtaining Ḡ#

X,V/2

(
{b: }#

:=1

)
, which is based on sufficiently

accurate solution of (1.57) (or its regularized version). The idea is trivial: to «solve»
(1.57) by using SGD with samples {b: }#

:=1 without repeating. So the first # itera-
tions of this algorithm is completely coincide with standard SGD iterations (1.14).
An interesting phenomenon is that further iterations of SGD based on the same
sample set {b: }#

:=1 not only not improve the quality of the solution (this quality is
measured in terms of initial stochastic optimization problem!), but can also provably
lead to a decrease in quality (overfitting).

This idea was further developed in seminal work [49], where it was shown that for
the standard SGD (with output Ḡ) after ) iterations, see (1.18)) applied to smooth
convex (but not strongly convex!) empirical problem (without any regularization!)
in the expectation form (1.53):

5 (Ḡ) ) − 5 (G∗) ∝ #−1/2 if ) ∝ # .

This phenomenon sometimes called «early stopping» [41]. The work [49] initiated a
lot of activity around overfitting properties of SGDapplied to the empirical problems,
see the survey in [73]. In particular, for smooth convex (but not strongly convex!)
problems in [75] it was shown that

5 (Ḡ) ) − 5 (G∗) ∝ #−[/(1+[) if ) ∝ #2/(1+[) , [ ∈ (0, 1].

It means that too many iteration lead to overfitting. For smooth strongly convex
problems it was shown [73] that

5 (Ḡ) ) − 5 (G∗) ∝ (`#)−1 if ) ∝ (#/`)2,

which corresponds to (1.12). So in the strongly convex casewe do not expect the early
stopping effect (this effect was described above as an alternative to regularization)
and overfitting effect.

More stronger overfitting effect can be observed if one replace SGDwith Gradient
Descent (GD) [6, 109]:

G:+1 = G: − W̃∇ 5̄ (G: ).

In particular, for smooth convex empirical loss minimization problems the better
rate of convergence than

5 (Ḡ) ) − 5 (G∗) ∝ #−5/12

is impossible (without additional assumptions) independently of what is ) and ℎ
[109]. Remind that at the same assumptions for SGDwe have 5 (Ḡ) )− 5 (G∗) ∝ #−1/2

if ) ∝ # . This rate is better, since 1/2 = 6/12 > 5/12.
Despite all of this, in practice one can often meet that (1.57) with proper regu-

larization is solved by fast deterministic algorithms, say, LBFGS or even by using
high-order schemes, see Section 1.3.10. It works due to proper regularization!
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1.3.9 Distributed optimization

In Section 1.3.5 we met with batch-parallelization consist in possibility to parallelize
the batch calculation:

1
A

A∑
9=1
∇G 5 (G, b 9 ).

If we assume that we have the number of nodes that is a division of A , then we
can fully parallelize on these nodes batch calculation. But at each subsequent itera-
tion of considered accelerated algorithm (after the batch calculation) all the nodes
are required to share theirs sub-batches. In distributed optimization this is called
– communication. So one iteration assume one communication. The natural ques-
tion appears: does such number of communications is also optimal like the number
of subsequent iterations? In general the answer is affirmative [130]. It means that
without additional assumptions batched accelerated methods are the best ones in
Federated Learning (FL) setup from the theoretical point of view [58]. This con-
clusion looks somewhat discouraging since from the practice it is well known that
local steps (the main ingredient of FL) works good. To explain this contradiction
let us consider unconstrained convex quadratic stochastic optimization problem. An
important property of accelerated dynamics is its linearity (on average) in terms of
G. This linearity generates superposition principle: instead of communication at each
iteration we can to run independently at each node accelerated algorithm with re-
duced (to the number of nodes) batch-size and we communicate only one time at the
very end (at the last iteration) by calculating an average of the outputs at all the nodes
(this procedure is called «one shoot»). The total output of this approach will have the
same quality as the approach we started with [129] (with many communications).

It means that for quadratic stochastic optimization problems (and close to
quadratic ones) local steps give tangible benefits. Since quadratic problems are
naturally appears as a local approximation of real problem in the vicinity of the
solution or at each iteration as an inner problem (for example, iteration of Newton
method [17]) we can still exploit local steps. One such example we consider at the
very end of this section.

It is interesting to note, that rather than for deterministic distributed convex opti-
mization problems for stochastic convex optimization problems there is a significant
difference between the class of quadratic problems and convex ones [85, 130].

More naturally distributed setup appears when dealing with offline approach. For
example, if we have < nodes (such that # = < · B for some natural B) we can rewrite
the empirical loss minimization problem (1.57) as follows:

min
G∈&

 5̄ (G) :=
1
<

<∑
:=1

5̄: (G) :=
1
<

<∑
:=1

1
B

B∑
9=1

5 (G, b:, 9 )
 .

If we apply standard acceleratedmethod [89] assuming that 5̄ (G) is `-strongly convex
in 2-norm and has !-Lipscitz gradient, then the number of iterations (communica-
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tions) will be Õ
(√
!/`

)
(here and below in this section we skip all the logarithmic

for for a better visibility) and the number of incremental gradient oracle calls at each
node will be Õ

(
B
√
!/`

)
(the number of ∇G 5 (G, b:, 9 ) calculation).

Section 1.3.6 gives a hope that this bound can be further improved due to the
sum-type structure of the functions stored at each node. Indeed, there exist a dis-
tributed accelerated VR scheme [72] with Õ

(√
!/`

)
communication complexity

and Õ
(
B +

√
B!/`

)
oracle complexity in each node, where ! in the last formula is

a maximal Lipschitz gradient constant in G in 2-norm of functions 5 (G, b:, 9 ). This
bound is optimal [52] if we do not use that

{
b:, 9

}
are i.i.d. or do not use that among

5̄: (G) there exists some kind of similarity. In more details, if Lipschitz gradient
constants of 5̄ (G) − 5̄: (G) are bounded in 2-norm by ; (; � !) than we may expect
better communication complexity Õ

(√
;/`

)
, which corresponds to the lower bound

under similarity [7].
To use similarity we describe Accelerated gradient sliding for unconstrained

composite optimization problem:

min
G∈R=

[
5̄ (G) := 6(G) + ℎ(G)

]
,

where 6(G) has !6-Lipschitz continuous gradient, ℎ(G) is convex and has !ℎ-
Lipschitz continuous gradient (!6 ≤ !ℎ); 5̄ (G) is `-strongly convex function in
2-norm. Note that we do not assume 6(G) to be convex! The algorithm looks as
follows [64]:

G̃C = gGC + (1 − g)GC5 ,

GC+15 ≈ argmin
G∈R=

[
�C (G) := 6(G̃C ) + 〈∇6(G̃C ), G − G̃C 〉 + !6‖G − G̃C ‖22 + ℎ(G)

]
, (1.60)

which means

‖∇�C (GC+15 )‖
2
2 ≤

!2
6

3

G̃C − arg min
G∈R=

�C (G)
2

2
, (1.61)

GC+1 = GC + [`(GC+15 − G
C ) − [∇ 5̄ (GC+15 ),

where

g = min

{
1,
√
`

2
√
!6

}
, [ = min

{
1

2`
,

1
2
√
`!6

}
.

This algorithm (with output point G# ) has an iteration complexity

Õ ©«
√
!6

`

ª®¬
and solves several tasks at once:
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• (simple acceleration) If ℎ(G) ≡ 0 this algorithm becomes an ordinary acceler-
ated method with

GC+15 = G̃C − 1
2!?
∇6(G̃C );

• (Catalyst) If 6(G) ≡ 0 this algorithm becomes a Catalyst-type proximal envelop
[74], but less sensitive to the accuracy of the solution of (1.60);24

• (Sliding) If we apply to (1.60) Accelerated gradient sliding with 6(G) := ℎ(G)
and ℎ(G) := 6(G̃C )+〈∇6(G̃C ), G−G̃C 〉+!6‖G−G̃C ‖22 then obtain the total complexity
of ∇ℎ(G) oracle as

Õ ©«
√
!6

`

ª®¬ · O
(√

!6 + !ℎ
!6

)
= Õ

(√
!ℎ

`

)
.

That is, we have split the complexity of considered composite problem to the
complexities correspond to the separate problems:

Õ ©«
√
!6

`

ª®¬ for #∇6(G) and Õ
(√

!ℎ

`

)
for #∇ℎ(G).

Let us rewrite the empirical problem as follows

min
G∈R=

[
5̄ (G) :=

(
5̄ (G) − 5̄1 (G)

)
+ 5̄1 (G)

]
. (1.62)

Denoting the first sum as 6(G) and the second one as ℎ(G) we can use Sliding trick
to split the complexities. Note that we significantly use the fact that in this scheme
6(G) is not necessarily convex! So it remains only to notice that described Accel-
erated gradient sliding under this choice of 6(G) and ℎ(G) has a natural distributed
interpretation.25 It gives at the end a distributed algorithm that works according to
the lower bounds for communications and oracle calls per node complexities under
similarity [7]. Due to the statistical (i.i.d.) nature of

{
b:, 9

}
(statistical similarity) one

may expect that [53]: !6 ∝ B−1/2.
Thus, the number of communications for the developed algorithm is proportional

to ∝
√

1/
√
B` and the number of incremental gradient oracle calls at each node

remains the same as for ordinary accelerated method Õ
(
B
√
!/`

)
. It means that we

24 From Catalyst technique one can obtain (1.58) based on (1.59), restarts (see the proof of
Theorem 1.10) and accelerated batched algorithm, see Section 1.3.5. Note also the paper [19],
where the authors independently proposed stable version (to the accuracy of the solution of (1.60))
of Catalyst. Both of these versions are «logarithmic-free» (do not introduce additional logarithmic
multipliers compared to direct acceleration), rather than initial one [74].
25 Indeed, we can assign the node number 1 to be a master node that minimize at each iteration
(1.60) with 6 (G) := 5̄ (G) − 5̄1 (G) and ℎ (G) := 5̄1 (G) . It is obvious, that ℎ (G) is available to the
master node and ∇6 ( G̃C ) can be available due to communications of the master node with the other
ones. At each round of communications :-th node sends ∇ 5̄: ( G̃C ) to the master node and receive
in return GC+1

5
, which is calculated at the master node.
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indeed improve the communication complexity by using statistical similarity. But
at the same time we have worsened the oracle complexity per node in comparison
with VR accelerated method, which uses sum-type structure of the terms stored in
each nodes. An open question is to build an «intermediate» algorithm – some kind
of convex combination of VR and Sliding with statistical similarity. The parameter
of this convex combination is determined in practice by the ratio of arithmetic
complexities of one oracle call to one communication.

Note that in (1.62) instead of 5̄1 (G) we can take an arbitrary smooth convex
functions. In particular we can take Taylor series expansion

5̃1 (G) := 5̄1 (G̃C ) + 〈∇ 5̄1 (G̃C ), G − GC 〉 +
1
2!
〈∇2 5̄1 (G̃C ) (G − G̃C ), G − GC 〉.

Note that 5̃1 (G) – convex function, rather than 5̄ (G) − 5̃1 (G). Under the third-order
smoothness assumption one may expect that 5̃1 (G) has a close hessian to the hessian
of 5̄1 (G) in the vicinity of G̃C . Thus we may expect this method to be required only
few communication steps when the number of iteration C is large. Note that in this
approach we not only have similarity on higher iterations, but also have a quadratic
structure for auxiliary problem (1.60). In case of stochastic (randomized) oracle
this structure allows to use accelerated one-shoot local methods for (1.60), which
strength the effect of communications saving.

In this section we consider distributed centralized algorithms. Some of the results
mentioned above have analogues also in decentralized setup, see [46] and references
there in.

1.3.10 Accelerated tensor methods

Starting with the work [91] the interest in tensor methods (i.e. the methods that used
high-order derivatives) in convex optimization began to grow steadily. In particu-
lar, an optimal26 (up to a logarithmic complexity factor for line-search procedure)
second-order method was proposed in [78] and an optimal (also, up to a logarithmic
factor) high-order method was proposed in [39]. In [90] it was shown that second
and third-order tensor methods are implementable – complexity of each iteration is
roughly the same as for Newton method. Optimal methods without line-search (that
work according to the lower bounds up to a constant factor) were recently proposed in
[66, 18]. Thus the deterministic theory of tensor methods for convex (unconstrained)
problems seems to be close to the final point. In Section 1.3.5 we have demonstrated
the profit of acceleration in online approach for smooth problems. Fortunately, we
can additionally improve the results of Section 1.3.5 by using accelerated tensor
methods. For that we need to develop sensitivity analysis of these methods. Such an
analysis was made in [1] for accelerated tensor methods according to Nesterov-type
of acceleration under high-order smoothness assumption [90]. This acceleration is

26 See [63, 38] and references there in for lower bounds.
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a little bit worse than the best one Monteiro–Svaiter acceleration [78, 39, 66]. By
using the results of [1] and batching technique one can improve the number of sub-
sequent iterations in online approach from Section 1.3.5. If = is not too big then such
improvement can be valuable also in terms of arithmetic complexity.

For offline approach the main motivation to use tensor methods is coming from
the similarity approach, see Section 1.3.9. Where the reduced auxiliary problem
(1.60)

min
G∈R=

〈∇ 5̄ (G̃C ) − ∇ 5̄1 (G̃C ), G − G̃C 〉 + ;‖G − G̃C ‖22 +
1
B

B∑
9=1

5 (G, b1, 9 )


is a sum type problem with the reduced number of terms B (B � #). If B ' = we have
that for Newton-type methods the complexity of one iteration is upper bounded by
the Hessian-matrix inversion, rather than the complexity of Hessian calculation by
itself. In other words, in this case second and third-order tensormethods do not «feel»
the sum-type structure of the problem and work with almost the same complexities
as if B = 1. This idea reduces the number of subsequent iterations of second and
third-order methods for inner (auxiliary) problems and simultaneously alleviates the
main drawback of tensor methods related with expansive iterations [33].27

1.3.11 Saddle-point problems and variational inequalities

Offline approach to the stochastic Saddle-point problems (SPP) developed in [71,
137, 30, 93], see also [65] for distributed approach. Online approach to the stochastic
Variational Inequalities (VI) – and as a consequence for saddle-point problems –
developed in [56, 42, 43].

Roughly speaking, all the results for both of the approaches look very similar
to the results mentioned in the previous sections for the stochastic optimization
problems except absence of acceleration. But there still exist open problems for SPP
and VI that were closed for optimization problems. For example, randomized VR
algorithms for (strongly) convex problems match the lower complexity bound (see
Section 1.3.6), rather than its SPP and VI analogues [4, 48].

1.3.12 Wasserstein barycenter example

Wasserstein barycenter (WB) problem and its dual entropy-smoothing version is
an extremely interesting example in many ways at once. First of all, stochastic

27 Since we have to calculate the sum the iteration must be expensive independently of the order of
the method we use. This observation opens up the possibility to increase the order of the method
by conserving the complexity of iteration.
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optimization (population) WB problem formulation comes from Statistics, but is
not due to the principle of maximum likelihood [14, 12]. So we may consider this
example to be intermediate in terms of Section 1.1.1 and Section 1.1.2. Secondly,
the empirical WB problem as a convex optimization problem has an efficient saddle-
point and dual representations [27]. For example, when WB problem solved on the
space of finite-support measures (on = points) the complexity of primal gradient
oracle is Õ

(
=3) a.o. (arithmetic operations) and the complexity of dual gradient

oracle is O
(
=2) a.o. Moreover, dual gradient oracle has a natural stochastic unbiased

estimation with the complexity O (=) a.o. For some real-world applications = ' 106.
Hence mentioned above computational observations play an important role [27].
Thirdly, the possibility to use dual oracle appears only in offline approach. To make
this approach correct we need proper regularization [28], see also Theorem 1.8 for
the Euclidean case. This regularization should be non-Euclidean, since we have
simplex constraint – barycenter is a measure, that is an element of probability
simplex (= (1). Fourthly, WB problem is non-smooth, but strongly convex in 2-norm
on (= (1) if we consider dual entropy-smoothing version [27]. Since the problem
is non-smooth it is impossible to use batch-parallelization in online approach, see
Section 1.3.5. But due to the strong convexity (comes from regularization or/and
from dual entropy-smoothing) the dual problem (in offline approach) is smooth
[104] and we can apply distributed (batched-parallelized) accelerated methods to
solve it [27]. To conclude, WB problem is an interesting example of the problem for
which offline approachmotivated not only the ability to distribute calculations across
nodes (what is typical of the offline approach in general), but also the possibility
to solve dual problem with better properties: cheaper oracle and better iteration-
complexities bounds, since smoothness without strong convexity (for dual problem)
is better than strong convexity without smoothness (for primal problem).

At the end we mentioned that the empirical WB problem is not well suited
for modern distributed Variance Reduced (VR) schemes and algorithms that use
similarity. The reason is a simplex constraint. Although for Euclidean proximal
setup distributed VR is well developed [65] as well as similarity [64], but for non-
Euclidean proximal setup (generated by the simplex constraint) the results are absent.

With this remark, we wanted to demonstrate that despite the huge progress made
in the last decade in convex stochastic programming, there are still a lot of open
problems that looks like a minor generalization of already solved ones. Apparently,
solving such problems will require the involvement of new ideas.

1.4 Historical Notes

Stochastic optimization has began to take shape in an independent field of knowl-
edge for about 70 years ago starting with the seminal paper of H. Robbins and
S. Monro [103]. This field was actively developed along with the usual optimiza-
tion. In particular, in an outstanding book of A.S. Nemirovski and D.B. Yudin [85]
(original version of the book was dated by 1979) the complexity theory of mod-
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ern convex optimization was build. This theory included stochastic gradient oracle.
So we may consider 1979 as a second (theoretical) birth of stochastic optimiza-
tion. The third significant wave of the interest happened for about 20 years ago
in accordance with Data Science applications. It is already impossible to imagine
modern data analysis without stochastic optimization. For the moment many books
were written around Stochastic optimization [35, 13, 108, 100, 116, 114]. In some
books and surveys one can find Data Science applications of Stochastic Optimization
[80, 120, 121, 110, 101, 134, 25, 15, 8, 135].

The results of Section 1.1.1 are rather standard and can bemainly find in [54, 119].
An example of Vadim V. Mottl was taken from [68]. Non-asymptotic results can be
found in [117, 118]. Polyak–Juditsky–Ruppert averaging was separately proposed in
[106] and [96, 97]. Online analogue of Theorem 1.1 was developed in [98, 99].

The results of Section 1.1.2 were motivated by the papers [59, 122, 111, 112].
Online learning is well presented in [20, 51, 92, 21]. Note that for the convex case
(not strongly convex) the described results can be generalized to non-euclidean
proximal setup. The most interesting applications related with unit simplex & =

(= (1) [20]. Note that in this section we started to use the notion of (unbiased)
stochastic subgradient ∇G 5 (G, b) without accurate definition of this subject in the
non-smooth case. The problems appear when the subgradient is not unique. In this
case we understand under ∇G 5 (G, b) some kind of measurable selector (no matter
what kind of selector).More accurate definitions and properties of stochastic gradient
one can find in [114].

The results of Section 1.2.1 were taken from [115, 83, 114]. The tight lower
bound for online case was obtained in [2]. The tight lower bound for offline case (for
smooth convex problems) was obtained in [36].

Online results of Section 1.2.2 corresponds to [57]. Offline results of Sec-
tion 1.2.2 corresponds to [111, 110]. High-probability bounds investigated in
[37, 62]. Tikhonov’s regularization was accurately developed in [127]. For non-
euclidean case offline results were generalized in [28, 30].

Online results of Section 1.2.3 were taken from [115, 114]. Offline results of
Section 1.2.3 were taken from [57] for the case B = 2 (B is growth parameter). For the
case B = 1 (sharpminimum [94]) this result was obtained earlier in a different manner
[55]. The idea of restarts for strongly convex problems goes back to [85, 84]. For the
stochastic optimization problems it was developed in [57]. For a sharp minimum and
deterministic optimization convex optimization problems restarts was developed in
[105].
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Chapter 2
Stochastic Gradient Descent: Nonsmooth Case

Abstract This chapter .
In this chapter, we briefly describe

2.1 Stochastic Subgradient Method

In this section we consider the problem

min
G∈&

{
5 (G) = Eb∼D [ 5 (G, b)]

}
, (2.1)

where the set & is closed and convex.

2.1.1 Stochastic Subgradient Method

Plan:
Introduce assumptions on the objective: in each iteration : , the algorithm uses a

random vector 6: called stochastic subgradient at the current point G: .

E: [6: ] = ∇ 5 (G: ) ∈ m 5 (G: ), (2.2)

where E: [·] denotes an expectation with respect to the randomness from the :-th
iteration.

Assumption 2.1 (Uniformly Bounded Variance) There exists a constant f ≥ 0
such that for any : ≥ 0 stochastic subgradient 6: is unbiased, i.e., (2.2) holds, and
satisfies

E:
[
‖6: − ∇ 5 (G: )‖22

]
≤ f2. (2.3)

(this assumption is made globally)
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52 2 Stochastic Gradient Descent: Nonsmooth Case

The main assumption of this section is that the objective function 5 has bounded
subgradients such that

‖∇ 5 (G: )‖2 ≤ ".

Give equivalence to the Lipschitz continuity of 5 .
Give the Projected Stochastic Subgradient Method. See https://cpn-us-w2.

wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.
pdf (3.1.4) (the whole equations should be in our case too).

Prove the convergence rate in expectation in the convex case following the
steps of the proof of Theorem 3.1 in https://cpn-us-w2.wpmucdn.com/sites.
gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf, but adopting
it to the stochastic case as in the proof of Theorem 4.1 in the same book. After
obtaining the result similar to Theorem 3.1/Theorem 4.1. do not assume that the
set is bounded. Instead, assume that there is a known upper bound on the distance
between Gℓ and G∗. Keep the possibility to start averaging from some number not
equal to 1. upper limit is # , lower limit is ℓ. Give the results for both types of the
stepsizes as in Corollary 3.1 and Corollary 3.2 in the above book.

Prove the convergence rate in expectation in the strongly convex case following the
steps of the proof of Theorem 3.2 in https://cpn-us-w2.wpmucdn.com/sites.
gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf, but adopting
it to the stochastic case.

Remark on Lipschitz property on a ball since in expectation the distance will not
be twice larger than at the starting point.

2.1.2 Lower bounds

Plan:
One-dimensional convex case. Take the example https://www.mccme.ru/

dubna/2017/notes/gasnikov-slides4.pdf, slide 16, change the set to [−', '],
the function to "YG, and the distribution to N(0, f2) (confidence level in our
book is V), write a more detailed explanations, in particular, estimate the sec-
ond moment of the stochastic gradient, derive the Likelihood-ratio test, trans-
late the bound to the language of the objective residual (to optimize below ac-
curacy |Y |, we need to know exactly the sign of Y). May be helpful: https:
//en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma

One-dimensional strongly convex case. Take the example https://www.mccme.
ru/dubna/2017/notes/gasnikov-slides4.pdf, slide 17, multiply the function
by strong convexity parameter `, change the distribution to N(0, f2) (confidence
level in our book is V), write a more detailed explanations, in particular, estimate
the second moment of the stochastic gradient assuming that |G∗ | ≤ ' and the
unconstrained minimization problem is equivalent to minimization over a ball with
center at 0 and radius 2', add more details to the derivations, underline that we have
bounds both for the distance to the solution and for the objective residual. Underline

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://www.mccme.ru/dubna/2017/notes/gasnikov-slides4.pdf
https://www.mccme.ru/dubna/2017/notes/gasnikov-slides4.pdf
https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma
https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma
https://www.mccme.ru/dubna/2017/notes/gasnikov-slides4.pdf
https://www.mccme.ru/dubna/2017/notes/gasnikov-slides4.pdf
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also that smoothness does not help, i.e. the bound is achieved on a nice smooth (even
quadratic) function.

Multidimensional case will be in the section on MD with the bounds in general
geometries. Cite the book by Duchi

2.2 Stochastic Composite Mirror Descent

In this section we consider composite/regularized optimization problems:

min
G∈&⊆R=

{ 5ℎ (G) = 5 (G) + ℎ(G)} , (2.4)

where, as before, the function 5 (G) : R= → R is given as 5 (G) = Eb∼D [ 5 (G, b)],
the set & is closed convex, and function ℎ(G) : R= → R is a proper lower semicon-
tinuous convex function called regularization/composite term. Moreover, function ℎ
is assumed to have simple structure. The exact meaning will be explained below.

2.2.1 Stochastic Composite Mirror Descent

Plan:
Introduce the proximal setup. R=, norm, dual norm, distance generating func-

tion 3 (be accurate and take it from https://cpn-us-w2.wpmucdn.com/sites.
gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf Sect 3.2 Mir-
ror descent), Bregman divergence + (G, H) = 3 (G) − 3 (H)− < 3 (H), G − H >.

Give examples: Euclidean proximal setup, Entropy setup, give references to A.
Nemirovski’s lectures for more proximal setups.

Introduce assumptions on the objective: in each iteration : , the algorithm uses a
random vector 6: called stochastic gradient at the current point G: .

E: [6: ] = ∇ 5 (G: ) ∈ m 5 (G: ), (2.5)

where E: [·] denotes an expectation with respect to the randomness from the :-th
iteration. (can just shortly say an refer to the section 2.1)

Assumption 2.2 (Uniformly Bounded Variance) There exists a constant f ≥ 0
such that for any : ≥ 0 stochastic gradient 6: is unbiased, i.e., (2.2) holds, and
satisfies

E:
[
‖6: − ∇ 5 (G: )‖2∗

]
≤ f2. (2.6)

We underline that in this section, this condition is considered w.r.t. the general norm.
The main assumption of this section is that the objective function 5 has bounded

subgradients such that
‖∇ 5 (G: )‖∗ ≤ ".

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
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We underline that in this section, this condition is considered w.r.t. the general norm.
Give the assumption on the simplicity of the function ℎmeaning that a subproblem

in composite mirror descent can be solved exactly or efficiently up to machine
precision. The Bregman proximal operator associated with Uℎ for any U ≥ 0 and +

P+Uℎ (G; 6) = argmin
D∈&

{Uℎ(D) + 〈6, D − G〉 ++ (D, G)} (2.7)

should be easy to compute for any G ∈ &.
Give the Stochastic Composite Mirror Descent algorithm. Take https://www.

dropbox.com/s/os6637d2zdvqzsf/Lecture%208%202021-01-08.pdf?dl=0p.
5 and change the subgradient to the stochastic subgradient.

Throughout the book we use the following important result. State and prove the
main technical lemma, see Lemma 1 on p.1 https://wias-berlin.de/people/
dvureche/HU%202019-2010%20OPT/AGD.pdf (k - arbitrary convex function, bet-
ter use G+ instead of D+)

Prove the convergence rate in expectation in the convex case combining the proof
in the same file (Keep the composite in the resulting bound) and the proof in https:
//cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/
LectureOPTML.pdf Sect. 4.1.1 General nonsmooth convex functions. Important -
do not assume that the feasible set is bounded, rather assume that there is an upper
bound for + (G: , G∗). Give some remarks for particular cases: ℎ = 0 or ℎ ≥ 0 and
ℎ(G1) = 0. Then the bound is the same as for the stochastic subgradient method.

Give an example comparing the estimates in two setups - 2-setup and 1-setup,
see pp. 1-2 https://www.dropbox.com/s/txknghmvwxvn98q/Lecture%209%
202021-01-15.pdf?dl=0 and Example 3.1 in https://cpn-us-w2.wpmucdn.
com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf

Give the restarted mirror descent. (some thinking should be made or make as
discussed in the video of the corresponding lecture) Questions: take strongly con-
vex or uniformly convex case? If the second, which definition to take? https://
pubsonline.informs.org/doi/pdf/10.1287/10-SSY010 (2.1)? Growth con-
dition as in Sect. 1.2.3? If the growth condition is sufficient, it is better to take it.
Should we change the squared norm in the growth condition to the Bregman diver-
gence? Most probably, no. Assumption on the distance generating function 3 - an
appropriate modification of https://arxiv.org/pdf/1710.06612.pdf around
(41). underline that the growth condition is sufficient to assume for the whole 5ℎ .
Thus, e.g., only the composite may be strongly convex.

Prove the convergence rate in expectation for the restarted algorithm.As a hintmay
use https://arxiv.org/pdf/1411.2876.pdf Sect. 4.1 or https://arxiv.
org/pdf/1710.06612.pdf Sect. 4.3 (the second option may be used only as a hint
since it uses a predefined stepsize based on accuracy Y. we need to avoid this and
first consider general stepsizes.)

Questions to think about: inexact prox, biased stoch gradient

https://www.dropbox.com/s/os6637d2zdvqzsf/Lecture%208%202021-01-08.pdf?dl=0
https://www.dropbox.com/s/os6637d2zdvqzsf/Lecture%208%202021-01-08.pdf?dl=0
https://wias-berlin.de/people/dvureche/HU%202019-2010%20OPT/AGD.pdf
https://wias-berlin.de/people/dvureche/HU%202019-2010%20OPT/AGD.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://www.dropbox.com/s/txknghmvwxvn98q/Lecture%209%202021-01-15.pdf?dl=0
https://www.dropbox.com/s/txknghmvwxvn98q/Lecture%209%202021-01-15.pdf?dl=0
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/f/330/files/2019/08/LectureOPTML.pdf
https://pubsonline.informs.org/doi/pdf/10.1287/10-SSY010
https://pubsonline.informs.org/doi/pdf/10.1287/10-SSY010
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2.2.2 Composite Stochastic Dual Averaging

https://papers.nips.cc/paper/2009/file/7cce53cf90577442771720a370c3c723-Paper.
pdf (plan to be developed. But just algorithm, remarks and convergence rates without
the proof) Recent paper Juditskii Moulines

2.2.3 Lower bounds

Mirror Descent and Dual Averaging methods described in previous sections are
of the most interest in a context of non-smooth stochastic optimization, because
their convergence rates are optimal for the classes of Lipschitz continuous (strongly)
convex and uniformly convex functions correspondingly. To demonstrate this, one
need to obtain sharp lower oracle complexity bounds for both of the classes and
show the equivalence their equivalence with convergence rates of the methods. We
present the results without proofs, but introduce all the main underlying ideas. Note
that lower bounds we consider correspond to the accuracy measured on average.

Let’s start with a Lipschitz continuous convex and strongly convex cases. Follow-
ing the Nemirovski and Yudin, we consider some classes of oracles q ∈ O, functions
5 ∈ F , 5 : & → R and optimization methods < ∈ M) performing at most )
iterations before returning point G) , and then estimate minimax error

n (F , q;)) = min
<∈M)

sup
5 ∈F
Eq

[
5 (G) ) −min

G∈&
5 (G)

]
. (2.8)

We equip RA with ‖ · ‖ ? norm with ? ∈ [1, +∞], the corresponding dual norm is
‖ · ‖@ with @ such that 1

?
+ 1
@
= 1. Further, each of q ∈ O is a first-order stochastic

oracle returning unbiased function and subgradient estimations 5̂ (G) and 6̂(G) with
bounded variance of the latter:

E[ 5̂ (G)] = 5 (G), E[6̂(G)] ∈ m 5 (G), E[‖6̂(G)‖2@] ≤ f2 (2.9)

for some f ≥ !, F! is a class of convex Lipschitz continuous functions 5 : & → R:

| 5 (G) − 5 (H) | ≤ !‖G − H‖ ? , ∀G, H ∈ &. (2.10)

Herewith & ⊆ R3 and contains some closed ball of radius A > 0 in ‖ · ‖∞ norm
with a center in origin. Next class we consider is F`,! which consists of Lipschitz
continuous functions satisfying `-strong convexity assumption in ‖ · ‖2 norm:

5 (UG+(1−U)H) ≥ U 5 (G)+(1−U) 5 (H)+U(1−U) `
2

2
‖G−H‖22, ∀G, H ∈ &, U ∈ [0, 1] .

(2.11)
Now, when we have introduced all the necessary notions, without further ado we

present the lower complexity bounds.

https://papers.nips.cc/paper/2009/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://papers.nips.cc/paper/2009/file/7cce53cf90577442771720a370c3c723-Paper.pdf
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Theorem 2.1 Let 3, @, q, (, A, ! be such as they were introduced above. Then, there
exists 2 > 0 such that

1. For @ ∈ [1, 2],

sup
q∈O

n (F! , q;)) ≥ min

{
2!A

√
3

)
,
!A

144

}
. (2.12)

2. For @ ∈ (2, +∞],

sup
q∈O

n (F! , q;)) ≥ min

{
2!A

3
1− 1

@

√
)
,
!3

1− 1
@ A

72

}
. (2.13)

Theorem 2.2 Let 3, @, q, (, A, `, ! be such as they were introduced above. Then,
there exist 21, 22 > 0 such that

1. For @ ∈ [1, 2],

sup
q∈O

n (F`,! , q;)) ≥ min

{
21

!2

`2)
, 22!A

√
3

)
,

!2

1152`23
,
!A

144

}
. (2.14)

2. For @ ∈ (2, +∞],

sup
q∈O

n (F`,! , q;)) ≥ min

{
21
!231− 2

@

`2)
, 22

!A3
1− 1

?

√
)

,
!231− 2

@

1152`2 ,
!A3

1− 1
@

144

}
.

(2.15)

The proofs of these results are out of the scope of this book and can be easily
found by the reader in the original papers we list in references below. Nonetheless,
we would like to explain the main underlying concepts because they are interesting
by themselves. Presented lower complexity bounds can be obtained based on lower
bounds on hypothesis tests error. This reduction is achieved by the proper choice of
functions, such that optimization of one of them leads to unambiguous identification
of this one function (uniqueness for enough accuracy is guaranteed). One also need
to choose a special oracle (it is allowed to choose it manually, because of supq∈O
in the results) evaluation of which needs in sampling from Bernoulli distribution
(coin tossing) with a parameter, specified by the function. Then we notice that
) iterations produce ) Bernoulli samples and desired accuracy can be achieved
only if it is possible to estimate parameters of Bernoulli distribution with some
confidence based on ) observations (in other words, optimization implies parameter
identification, because parameters are chosen to be distinct enough). This possibility
is determined by information theory lower bounds based on Fano’s inequality and
Le Cam’s bound.
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2.2.4 Constrained Mirror Descent

TODO: this should be in the middle of §4 of Chapter 1 according to the plan in
DOCX-file.

Another attractive property of the mirror descent algorithm MD is a possibility to
handle not only non-trivial geometry but functional constraints.

We consider the following convex constrained optimization problem over a simple
closed convex set& ⊆ � for � is a finite dimensional normed space, i.e.R= endowed
with some norm ‖ · ‖

min
G∈&

5 (G),

s.t. 6 (ℓ) (G) ≤ 0, ℓ = 1, . . . , =6 .
(2.16)

In the book byA.Nemirovsku andD.Yudin [85] it was observed that the following
gradient-type algorithm can handle this type of the problem (with & = R=)

G:+1 =


G: − [∇ 5 (G: ), max

ℓ=1,...,=6
6 (ℓ) (G: ) ≤ Y;

G: − [∇6 (ℓ (:)) (G: ), max
ℓ=1,...,=6

6 (ℓ) (G: ) > Y,
(2.17)

where ℓ(:) = arg maxℓ=1,...,=6 6
(ℓ) (G: ) and Y is a desired accuracy and constraint

feasibility.
With a slight abuse of notation, next we define a stochastic version of the problem

(2.16)

min
G∈&

5 (G) = Eb [ 5 (G, b)],

s.t. 6 (ℓ) (G) = Ebℓ [6 (ℓ) (G, bℓ)] ≤ 0, ℓ = 1, . . . , =6 .
(2.18)

Thus particular type of the problem is quite important for the theory of Markov
Decision Processes.

Markov Decision Processes and Reinforcement Learning

TODO Daniil: Fill it

? (2.19)

? (2.20)

Next in this section we describe a generalization of the gradient-based scheme
(2.17) for the problems of type (2.18). Most intriguing, this new scheme is capable
to produce solution to the dual problem (2.20) while algorithm works only with the
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primal formulation. This fact is essential to extract the near-optimal policy and solve
the MDP problem.

Let us start from the providing the list of assumptions Probably first two assump-
tions could be defined in the previous paragraph.

Assumption 2.3 (Lipschitz continuity) � and all � (ℓ) are Lipschitz continuous
with constant " for the objective function and for all constraints;

Assumption 2.4 (Uniformly bounded noise) Stochastic gradients are bounded
‖∇ 5 (G, b)‖∗ ≤ ", ‖∇6 (;) (G, b (;) )‖∗ ≤ " a.s.;

Assumption 2.5 (n-approximation.) There are a set of functions 6 (ℓ)n (G) such that
‖6 (ℓ) − 6 (ℓ)n ‖∞ < n .

The first assumption is standard for non-smooth optimization, whereas the sec-
ond one could be potentially weaken. The last assumption could be guaranteed by
additional approximation of the expectation within n-accuracy.

Daniil: Next I define here prox-function, Bregman divergence and Mirror step,
but it has to be placed in the previous paragraph.

Let us define a prox-function 3 : & → R as a continuous 1-strongly convex
function 3 with respect to the norm ‖ · ‖ on R= that admits continuous selection
of subgradients ∇3 (G) where they exist. Bregman divergence that corresponds to a
prox-function 3 is a function + (G, H) = 3 (H) − 3 (G) − 〈∇3 (G), H − G〉.

Given vectors G ∈ � and { ∈ �∗, the mirror step is defined as

G+ = Mirr(G, {) = argmin
H∈&

{〈{, H〉 ++ (G, H)} .

We assume that the mirror step can be easily computed.
Next we may describe the algorithm Stochastic Mirror Descent with functional

constraints SMD-Constraints. First, let us fix a stepsize [, a desired constraint feasi-
bility Y, an initial point G0 = argminG∈& 3 (G), and a number of iterates # .

Then for each step : = 0, . . . , # − 1 we firstly compute

ℓ(:) = arg max
ℓ=1,...,=6

6
(ℓ)
n (G: ),

and then

G:+1 =

{
Mirr(G: , [∇ 5 (G: , b: )) if 6 (ℓ (:))n < n + Y, "productive step"
Mirr(G: , [∇6 (ℓ (:)) (G: , b: )) if 6 (ℓ (:))n ≥ n + Y, "non-productive step".

(2.21)
In other words, we produce steps to the direction of the stochastic gradient of the
objective function if our current point is feasible enough, andwe are trying to improve
the most violated constraint otherwise. Additionally, we define � = {: : 6 (ℓ (:))n <

n + Y} a set of productive iterates, and � is a set of non-productive iterates.
Next we define the first performance criteria for our problem.
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Definition 2.1 (Approximate primal solution) A vector Ĝ ∈ & is called an
(Y 5 , Y6, X)-solution to the primal problem (2.18), if the following holds with prob-
ability at least 1 − X

5 (Ĝ) − 5 (G∗) ≤ Y 5 ,
6 (ℓ) (Ĝ) ≤ Y6 ℓ = 1, . . . , =6

(2.22)

where G∗ is a solution to the problem (2.18).

Next we are going to state the convergence result.

Theorem 2.3 Let Θ2
0 = 3 (G∗) − 3 (G

0). Then Algorithm SMD-Constraints with [ =
Y/"2 and Ĝ = 1

|� |
∑
:∈� G

: produces (Y, Y + 2n, X)-solution to the primal problem
(2.18) in

# = O
(
Θ2

0"
2 log(1/X)
Y2

)
iterates.

We start from the technical statement that is extremely useful for the analysis.

Lemma 2.1 Let ℎ be some convex function over a set &, [ > 0 is a stepsize, G ∈ &.
Let the point G+ = Mirr(G, [(∇ℎ(G) + Δ)), where Δ is some vector from the dual
space. Then, for any H ∈ &

[(ℎ(G) − ℎ(H) + 〈Δ, G − H〉) ≤ [〈∇ℎ(G) + Δ, G − H〉 ≤ [
2

2
‖∇ℎ(G) + Δ‖2∗ ++ (G, H) −+ (G+, H).

Proof Daniil: Probably it appears in earlier proofs. �

Daniil: It is a kind of the chaos in the notation. Is it possible to simplify it?
Denote ∇̂: 5 = ∇ 5 (G: , b: ),∇: 5 = ∇ 5 (G: ) and ∇̂:6 (ℓ) = ∇6 (ℓ) (G: , b:ℓ ),∇:6

(ℓ) =

∇6 (ℓ) (G: ). Next we define the stochastic gradient noise function

W: (H) =
{
[〈∇̂: 5 − ∇: 5 , H − G:〉, : ∈ �;
[〈∇̂:6 (ℓ (:)) − ∇:6 (ℓ (:)) , H − G:〉, : ∈ �.

(2.23)

Then we provide very useful lemma that produces objective residual decomposition.

Lemma 2.2 For a point Ĝ defined in Theorem 2.3 and any H ∈ & the following holds

[ |� | · ( 5 (Ĝ) − 5 (H)) ≤ [
2"2

2
# + [3 (H) − 3 (G0)] − |� |[ · Y

+
#−1∑
:=0

W: (H) + [
∑
:∈�

6 (ℓ (:)) (H).
(2.24)
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Proof By the construction of productive and non-productive steps in (2.21) and
Lemma 2.1, we have for all H ∈ &

[(� (G: ) − � (H)) ≤ [
2"2

2
++ (G: , H) −+ (G:+1, H)

+ [〈∇̂: 5 − ∇: 5 , H − G:〉,
: ∈ �;

[(6 (ℓ (:)) (G: ) − 6 (ℓ (:)) (H)) ≤ [
2"2

2
++ (G: , H) −+ (G:+1, H)

+ [〈∇̂:6 (ℓ (:)) − ∇:6 (ℓ (:)) , H − G:〉
: ∈ �.

By definition of n-approximation, we have the following inequalities for "produc-
tive" and "non-productive" steps respectively

[( 5 (G: ) − 5 (H)) ≤ [
2"2

2
++ (G: , H) −+ (G:+1, H) + W: (H),

[(6 (ℓ (:))n (G: ) − 6 (ℓ (:)) (H)) ≤ [
2"2

2
++ (G: , H) −+ (G:+1, H) + W: (H) + [n .

Sum all these inequalities over all : ∈ � and : ∈ � and use the fact that � ∪ � =
{0, . . . , # − 1}∑

:∈�
[( 5 (G: ) − 5 (H)) +

∑
:∈�

[(6 (ℓ (:))n (G: ) − 6 (ℓ (:)) (H))

≤ [
2"2

2
|� | + [

2"2

2
|� | +

#−1∑
:=0
[+ (G: , H) −+ (G:+1, H)] +

#−1∑
:=0

W: (H) + |� |[n .

(2.25)

By the choice of G0 = argminG∈& 3 (G), we have

#−1∑
:=0
[+ (G: , H)−+ (G:+1, H)] ≤ + (G0, H) = 3 (H)−3 (G0)−〈∇3 (G0), H−G0〉 = 3 (H)−3 (G0).

Using definition of "non-productive" steps 6 (ℓ (:))n (G: ) > Y + n and convexity of 5∑
:∈�

[( 5 (G: ) − 5 (H)) +
∑
:∈�

[(6 (ℓ (:))
X

(G: ) − 6 (ℓ (:)) (H))

≥ [ |� | ( 5 (Ĝ) − 5 (H)) + [ |� | (Y + n) − [
∑
:∈�

6 (ℓ (:)) (H).

By application of inequality (2.25) and regrouping of terms, we finish the proof. �

Proof (Proof of Theorem 2.3) Let us analyze the statement of Lemma2.2 for H = G∗.
In this case we notice that 6 (ℓ) (G∗) ≤ 0 due to feasibility of the optimal point and
we have
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[ |� | · ( 5 (Ĝ) − 5 (G∗)) ≤
[2"2

2
# + Θ2

0 − |� |[ · Y +
#−1∑
:=0

W: (H).

Therefore, it is sufficient to analyze
∑#−1
:=0 W: (H). Define filtration of f-algebras

F: = f

(
{b8 , b8(ℓ) }8≤:

)
. It is easy to see that W: (G∗) is a martingale-difference

sequence adapted to F: . Additionally, notice that for any H ∈ &: ‖H − G0‖2 ≤
2(3 (H) − 3 (G0)).

Thus, by Azuma-Hoeffding inequality and recalling the definition [ = Y/"2 we
may produce the following high-probability bound

Lemma 2.3 Define the event E such that the following inequalities holds

#−1∑
:=0

W: (G∗) <
2Θ0
"
·
√

2#Y2 log(1/X).

Then P[E] ≥ 1 − X. �

Therefore we have the following bound on objective residual

[ |� | · ( 5 (Ĝ) − 5 (G∗)) ≤ [ |� |Y −
Y2#

2"2 + Θ
2
0 +

4Θ0
√

2#Y2 log(1/X)
"︸                                          ︷︷                                          ︸

remainder

.

We notice that the remainder term is negative for sufficiently large value of #Y2.
Formally speaking, if

# ≥
280 · Θ2

0"
2 log(1/X)
Y2

then
5 (Ĝ) − 5 (G∗) ≤ Y.

The bound on constraint feasibility simply follows from the definition on "productive"
steps, n-approximation, and convexity

6 (ℓ) (Ĝ) ≤ 1
|� |

∑
:∈�

6 (ℓ) (G: ) ≤ 1
|� |

∑
:∈�
(6 (ℓ)n (G: ) + X) ≤ Y + 2n .

Next we show that Algorithm SMD-Constraints also can generate solution to the
Lagrange dual problem and optimize the duality gap, that is very useful for solving
MDPs. Let us recall the definition of the Lagrange dual problem

max
_∈R=6+

{
q(_) = min

G∈&

{
5 (G) +

=6∑
ℓ=1

_ℓ6
(ℓ) (G)

}}
. (2.26)

It is well-known that for any G ∈ & : 6 (ℓ) (G) ≤ 0 ∀ℓ ∈ {1, . . . , =6} and _ ∈ R
=6
+

the weak duality holds: Δ(G, _) = 5 (G) − q(_) ≥ 0, where Δ is so-called the duality
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gap. We assume that for our primal problem (2.18) the Slater’s condition holds, i.e.
∃G ∈ & : ∀ℓ ∈ {1, . . . , <} : 6 (ℓ) (G) < 0. It implies that the dual problem has a
solution and there is the strong duality: Δ(G∗, _∗) = 0 for any G∗ and _∗ are solutions
to the primal and the dual problems respectively.

Then we may define another performance criteria for a pair of approximate
solution to the primal and dual problems under Slater’s condition.

Definition 2.2 (Approximate primal-dual solution) Let us call the pair (Ĝ, _̂) a
primal-dual (YΔ, Y6, f)-solution to (2.18) if the following holds with probability at
least 1 − X

Δ(Ĝ, _̂) = 5 (Ĝ) − q(_̂) ≤ YΔ,
6 (ℓ) (Ĝ) ≤ Y6 ℓ = 1, . . . , =6 .

(2.27)

Our estimate of dual variables is defined as follows

_̂ℓ =
1
|� |

∑
:∈�
I{ℓ = ℓ(:)}. (2.28)

Theorem 2.4 Let Θ
2
0 = supH∈& (3 (H) − 3 (G0)). Choose _̂ ∈ R<+ as defined in (2.28),

Ĝ = 1
|� |

∑
:∈� G

: , and a constant stepsize [ = Y/"2. Then the pair (Ĝ, _̂) is an
primal-dual (Y, Y + 2n, X)-solution for Y > 0, n ≥ 0, X ∈ (0, 1/2) after

# ≥ # ′0 = O
(
Θ

2
0"

2 (log(1/X) + ^(�∗))
Y2

)
,

where ^(�∗) is a constant of Nemirovski’s inequality TODO: Reference to appendix
for the dual space.

If � has a finite dimension =, then we always have ^(�∗) ≤ =. Additionally, if � is
endowed with ℓ? norm, then �∗ is endowed with ℓ@ norm, where 1/? +1/@ = 1, and
there is a more precise bound

^(�∗) ≤  
(

?

? − 1
, 3

)
=

{
3

2
?
−1
, ? ∈ [1, 2]

3
1− 2

? , ? ∈ (2, +∞]

In particular, if � has ℓ2 norm, ^(�∗) = 1. For ? ∈ [2, +∞] this bound is tight,
however, in the case ? ∈ [1, 2) and 3 ≥ 3 it could be improved to, for instance, a
logarithmic bound ^(�∗) ≤ 24 log(3) −4, that could be useful in the case of ℓ1-norm
and an entropy prox-function.

The only difference with guarantees in the primal setting is a presence of the
constant ^(�∗) that handle the geometry of the space of stochastic gradients. Next
we are going to prove this theorem.

Proof (Proof of Theorem 2.4) Now we start from the result of Lemma 2.2 for arbi-
trary H ∈ &.
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[ |� | · ( 5 (Ĝ) − 5 (H)) ≤ [
2"2

2
# + [3 (H) − 3 (G0)] − |� |[ · Y

+
#−1∑
:=0

W: (H) + [
∑
:∈�

6 (ℓ (:)) (H).

Notice that _̂; corresponds to the number of times 6 (ℓ (:)) (H) appears in the last sum
up to a scaling factor |� |. Therefore, it could be rewritten as follows

[ |� | ·
(
5 (Ĝ) −

{
5 (H) +

=6∑
ℓ=1

_̂ℓ6
(ℓ) (H)

})
≤ [

2"2

2
# + Θ2

0 − |� |[ · Y +
#−1∑
:=0

W: (H).

If we take supremum over H ∈ &, in the left-hand side we receive exactly the duality
gap

[ |� | · Δ(Ĝ, _̂) ≤ [
2"2

2
# + Θ2

0 − |� |[ · Y + sup
H∈&

#−1∑
:=0

W: (H). (2.29)

To control the right-hand side we will use the definition of W: (H), its linearity in H,
and Hölder inequality

#−1∑
:=0

W: (H) =
#−1∑
:=0
〈Δ: , H − G0 + G0 − G:〉 ≤ ‖H − G0‖

#−1∑
:=0

Δ:


∗

+
#−1∑
:=0

W: (G0),

where Δ: are defined as follows

Δ: =


[

(
∇̂: 5 − ∇: 5

)
, : ∈ �

[

(
∇̂:6 (; (:)) − ∇:6 (; (:))

)
, : ∈ �.

By a uniform bound on ‖H − G0‖ in terms of Θ0 we have

sup
H∈&

#−1∑
:=0

W: (H) ≤
√

2Θ
2
0

#−1∑
:=0

Δ:


∗

+
#−1∑
:=0

W: (G0).

Thus, we have to control these two terms. For the first onewemay applyMcDiarmid’s
inequality TODO: refer to appendix. Indeed, the change of one Δ: could change the
norm of the sum only by 2‖Δ: ‖∗ ≤ 4[" = 4Y"−1, and all noise b:

ℓ
is independent.

Thus with probability at least 1 − X/2#−1∑
:=0

Δ:


∗

≤ 4Y
"
·
√

2# log(2/X) + E
[#−1∑
:=0

Δ:


∗

]
.

To bound the expectation term in this representation, we apply Jensen’s and Ne-
mirovski’s inequalities
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E

#−1∑
:=0

Δ:


∗

)2

≤ E

#−1∑
:=0

Δ:

2

∗

 ≤ ^(�∗)
#−1∑
:=0
E

[
‖Δ: ‖2∗

]
≤ ^(�∗) 4#Y

2

"2 .

Finally, bound on
∑#−1
:=0 W: (G0) follows fromAzuma-Hoeffding inequalitywith prob-

ability at least 1 − X/2

#−1∑
:=0

W: (G0) ≤ 2Θ0
"
·
√

2#Y2 log(2/X).

Thus, by union bound with probability at least 1 − X we have

sup
H∈&

#−1∑
:=0

W: (H) ≤
Θ0
√

2#Y2

"

(
(4
√

2 + 2)
√

log(2/X) + 2
√
^(�∗)

)
.

The bound on the duality gap (2.30) became the following

[ |� | · Δ(Ĝ, _̂) ≤ Y[ |� | − Y
2#

2"2 + Θ
2
0 +

Θ0
√

2#Y2

"

(
(4
√

2 + 2)
√

log(2/X) + 2
√
^(�∗)

)
︸                                                                            ︷︷                                                                            ︸

remainder

.

(2.30)
Here we see that the remainder term has exactly the same structure as in the proof of
Theorem 2.3. Thus, taking # = O

(
Θ

2
0"

2Y−2 (log(1/X) + ^(�∗))
)
we conclude the

statement.

2.3 Stochastic Mirror Descent: Online Setting

In Section 1.1.2, it was mentioned the online approach to the optimization problem
in the Euclidean setting and was shown the SGD as an online learning procedure in
the standard online sense (see (1.14)).

In this section, we mention some results of the online approach in the non-
Euclidean setting, where, for example, the feasible set is a simplex, which seems
essential for the problem of experts [?, ?, 51, 20] and other problems (see also the
listed examples below).

In general, an online convex optimization problem can be formulated as a repeated
game between a learner and an adversary: at each iteration : , the learner first presents
a solution G: ∈ &, where & ⊂ R= is a convex set, it then receives a convex function
5: (G) : & −→ R, and suffers the loss 5: (G: ) for the submitted solution G: . The
objective of the learner is to generate a sequence of solutions G: ∈ &, : = 1, . . . #
that minimizes the regret Regret# , which is defined as follows:
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Regret# :=
1
#

#∑
:=1

5: (G: ) −min
G∈&

1
#

#∑
:=1

5: (G). (2.31)

This regret measures the difference between the cumulative loss of the learner’s
strategy and the minimum possible loss had the sequence of loss functions been
known in advance and the learner could choose the best-fixed action in hindsight.

Many successful algorithms have been developed over the past decade tominimize
the regret in online convex optimization. In the seminal work of Zinkevich [?], it
was presented an algorithm based on gradient descent with projection (Euclidean
setting) that guarantees a regret of $

(√
#

)
when the loss functions are Lipschitz

continuous in the convex set &. For strongly convex loss functions, in [?, ?] it was
proposed algorithms with logarithmic regret bound, for the Euclidean setup of the
problem also.

It is worthy mention that the estimate $
(√
#

)
of the bound of the regret is an

optimal for the class of problems with Lipschitz continuous functions. Where any
algorithm for online convex optimization incurs Ω

(
�"
√
#

)
regret in the worst

case, where " is the Lipschitz constant of the objective function and � is an upper
bound of the diameter of the convex set & [50].

For the non-Euclidean case, which is very important in many applications where
the Euclidean setting failed, it is convenient to use the Mirror Descent approach.

2.3.1 Examples of problems that can be modeled via online
optimization

Multi-armed bandits

The problems where we do not receive the full-information, i.e., we do not observe
the loss vector, are called bandit problems. The name comes from the problem of a
gambler who plays a pool of slot machines, that can be called “one-armed bandits”.
On each round, the gambler places his bet on a slot machine and his goal is to win
almost as much money as if he had known in advance which slot machine would
return the maximal total reward [92].

Let we assume that there are = different handles. The game is repeated # � 1
times (this number may be unknown in advance). At each step : , we must choose
a handle 8(:) to tug. Tugging a handle involves certain, generally random, losses
A:
8 (:) (for definiteness we assume that A:

8 (:) ∈ [0, 1]) which depend on the number of
the step, the number of the handle, and the tugging strategy which used up to step
: . Our strategy at the step : is described by the vector of probability distributions
G: ∈ (= (1) according to which we chooses a handle to tug independently of anything
else. The only information which we have at the step : is the vector
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G1, 8(1), A1

8 (1)

)
, . . . ,

(
G:−1, 8(: − 1), A:−1

8 (:−1)

))
.

We assume that the losses A: at the :-th step depend on G: but do not depend on the
result of playing the distribution G: ; they also depend on (G1, . . . , G:−1) and on the
results of the corresponding playing and on (A1, . . . , A:−1). Thus, our purpose is to
organize the handle tugging procedure so as tominimize the expected total losses. Let
us introduce the function 5: (G, b: ) = A:8 , with probability G8 , ∀8 = 1, . . . , =, where
A: is independent of the result of playing the probability distribution b: determined
by G. The generalized stochastic gradient of this function, with probability G8 , is

∇G 5:
(
G, b:

)
= (0, . . . , A:8 /G8︸         ︷︷         ︸

8

, . . . , 0)T, 8 = 1, . . . , =.

To this setting of the problem we have the following estimates [?]

$

(√
= ln =
#

)
on average, and $

(√
= ln (=/f)

#

)
with probability ≥ −f,

which are optimal for the given class of problems [?, 20, ?].

Weighting expert solutions and linear losses

Consider the problem of weighting expert solutions [20, ?], There are n different
experts. Each expert plays at market. The game is repeated # � 1 times (this number
may be unknown in advance). Let ;:

8
be the loss of an expert 8 at a step : , such that

|;:
8
| ≤ " . At each step : , we share one dollar among the experts according to a

vector G: ∈ (= (1). Our losses involved are calculated from the losses 〈;: , G:〉 of the
experts. The purpose is to organize the procedure for distributing a dollar at each
step so as to minimize our total losses. The expert losses ;: are allowed to depend
also on the current move G: . To this setting of the problem, with

5: (G, b: ) = 5: (G) = 〈;: , G〉,

we have the following estimate (for the losses, i.e. regret) $
(
"

√
ln =
#

)
[?], which is

optimal for the given class of problems.

Weighting of expert solutions and convex losses

Let & be a convex set. Under the conditions of the previous example, suppose that,
at the :-th step, the 8 expert uses a strategy Z :

8
∈ &, which involves losses _(l: , b:

8
),

where l: is a move, possibly of the hostile “nature”, which knows, in particular,
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our current strategy. The function _(·, ·) is convex in the second argument, and
|_(·, ·) | ≤ " . At each step, we must choose a new strategy G :=

∑=
8=1 G8 · Z :8 ∈ &

involving losses _(l: , G) so as to minimize our total losses. The function _(l: , G)
is convex in G for any l: , and therefore,

#∑
:=1

_

(
l: , G:

)
−min
8≤=

#∑
:=1
≤ _

(
l: , Z :8

)
≤

#∑
:=1

5:

(
G:

)
− min
G∈(= (1)

#∑
:=1

5: (G)

To this setting of the problem, with

5:

(
G, b:

)
= 5: (G) =

=∑
8=1

G8_

(
l: , Z :8

)
≥ _

(
l: , G

)
,

we have the following estimate (for the losses, i.e. regret) $
(
"

√
ln =
#

)
[?], which is

optimal for the given class of problems [20, ?].

Weighting of expert solutions and non-convex losses

Under the conditions of the previous example connectedwith the weighting of expert
solutions and convex losses, suppose that we cannot guarantee the convexity of _(·, ·)
in the second argument. Then we choose a strategy (a probability distribution on the
set of expert strategies) and play the random variable according to this probability
distribution. To this setting of the problem, with

5:

(
G, b:

)
= 5: (G) =

=∑
8=1

G8_

(
l: , Z :8

)
,

we have the following estimates (for the losses, i.e. regret) [?]

$

(
"

√
ln =
#

)
on average, and $

(
"

√
ln (=/f)

#

)
with probability ≥ −f,

which are optimal for the given class of problems [20, ?].

2.3.2 Online optimization for strongly convex functions

It is known that in offline convex optimization, the convergence bounds are vary-
ing over different classes of convex objective functions. The same fact holds in
online convex optimization and for important classes of objective functions (such
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strongly convex) significantly better regret bounds are possible. Such regret is called
logarithmic regret, which is significantly better than $

(√
#

)
.

Let 5 : & −→ R be a `-strongly convex function and Lipschitz continuous with
some constant" > 0 (see (B.7)), and let we consider the the following online variant
of subgradient method

G:+1 = Proj&

(
G: −

1
`:
∇ 5: (G: )

)
, : = 0, 1, . . . , # (2.32)

Then this algorithm achieves the following estimate of the regret (see [51] for more
details and proof)

regret# ≤
"2

2`#
(1 + log #) . (2.33)

We emphasize here, that the result about the bounds for the regret for the strongly
convex functions is in the Euclidean setting, where until now to the best of our
knowledge there is no generalization of this result with arbitrarily prox function and
non-Euclidean settings.



Chapter 3
Convex Stochastic Optimization: Smooth Case

Abstract TODO for Eduard: write an abstract
TODO for Eduard: write a short introduction
Eduard: I wrote the problem formulation and !-smoothness assumption here for

now. Once we have a structure of the book, we will put this to the better place.
In this chapter, we focus on the optimization methods for solving expectation

minimization problems

min
G∈R=

{
5 (G) = Eb∼D [ 5b (G)]

}
(3.1)

with 5 being !-smooth meaning that 5 is differentiable and for all G, H ∈ R= its
gradient is !-Lipschitz:

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ !‖G − H‖2. (3.2)

3.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the first stochastic optimization method for
solving problems of the form (3.1). From the given starting point G0 ∈ R= SGD
generates the points {G: }:≥0 satisfying the following update rule:

G:+1 = G: − W:6: . (3.3)

That is, at iteration : the method computes a random vector 6: called stochastic
gradient at the point G: and calculates G:+1 using formula (3.3) for some choice of
stepsize W: . Such a description of themethod leaves at least two significant questions:
1) how to choose stepsize W: and 2) how to choose stochastic gradient 6:?

Despite the seeming simplicity, each of these questions is complex on its own and
was studied by many researchers throughout the years. Moreover, the significant part
of this book is devoted to these two questions. We provide state-of-the-art results

69
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regarding the first question in Chapter here we should cite the chapter on adaptive
algorithms. In this chapter, we mainly focus on the second question and assume
(unless the different is claimed) that W: ≡ W > 0, where W is some constant (in
general, problem-dependent) stepsize.

3.1.1 Analysis of SGD: Uniformly Bounded Variance Case

To study the convergence ofSGDweneed to specify the assumptions on the stochastic
gradient 6: . Typically, 6: is assumed to be an unbiased estimator of ∇ 5 (G: ) at the
given point G: :

E: [6: ] = ∇ 5 (G: ), (3.4)

where E: [·] denotes a conditional expectation with frozen G0, G1, . . . , G: . However,
the unbiasedness property is not enough to ensure the convergence of the method
since the noise in the stochastic gradient can be quite heavy-tailed and the difference
between 6: and ∇ 5 (G: ) can be large with noticeable probability. Therefore, some
assumptions about second order moments of 6: are usually introduced. Perhaps, the
most popular one is the assumption of uniformly bounded variance.

Assumption 3.1 (Uniformly Bounded Variance) There exists a constant f ≥ 0
such that for any : ≥ 0 stochastic gradient 6: is unbiased, i.e., (3.4) holds, and
satisfies

E:
[
‖6: − ∇ 5 (G: )‖2

]
≤ f2. (3.5)

Let us discuss the introduced assumption. First of all, the word “uniformly” in
the name of the assumption means that the stochastic gradient should have bounded
variance at the whole space R=. Indeed, without any additional assumptions on
the method and/or stochastic gradient SGD can leave any bounded set containing
the solution of the problem with a positive probability. Next, we emphasize that
boundedness of the variance of the stochastic gradient does not imply boundedness
of the norm of the (stochastic) gradient.

To better illustrate the assumption, we provide some examples when Assump-
tion 3.1 holds.

Deterministic Gradient

Let 6: = ∇ 5 (G: ) for all : ≥ 0, i.e., there is no stochasticity in the method. Then
Assumption 3.1 holds with f = 0.

Additive Noise

Assume that 6: = ∇ 5 (G: ) + b: , where b: is generated from normal distribution
N

(
0, f2

=
I=

)
independently from the previous iterations. Then, we have
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E:
[
‖6: − ∇ 5 (G: )‖2

]
= E

[
‖b: ‖2

]
=

=∑
8=1
E

[
(b:8 )2

]
= = · f

2

=
= f2,

meaning that Assumption 3.1 is satisfied in this case as well.

Logistic Regression

Consider the following optimization problem called logistic regression, which is a
classical example of the loss function for binary classification tasks:

min
G∈R=

{
5 (G) = 1

<

<∑
8=1

58 (G)
}
, where 58 (G) = log (1 + exp (−H8 · [�G]8)) , (3.6)

and � ∈ R<×=, H ∈ {−1, 1}<. Here vector G denotes the vector of learnable pa-
rameters, rows of matrix � define training examples, and the components of vector
H = (H1, . . . , H<)> are the labels/answers on the corresponding examples. Consider
6: = ∇ 58: (G: ), where 8: is sampled uniformly at random from {1, . . . , <} indepen-
dently from the previous iterations. Then, 6: is conditionally unbiased estimate of
∇ 5 (G: ):

E:
[
6:

]
=

1
<

<∑
8=1
∇ 58 (G: ) = ∇ 5 (G: ).

Next, for convenience, we also define the rows of matrix � as 01, 02, . . . , 0< ∈ R=.
Then, for each 8 ∈ {1, . . . , <} we have

∇ 58 (G) = −
H8

1 + exp(H80>8 G)
08

and

∇ 5 (G) = − 1
<

<∑
8=1

H8

1 + exp(H80>8 G)
08 .

Therefore, using 1 + exp(H80>8 G) ≥ 1 for all G ∈ R=, 8 ∈ {1, . . . , =} and the classical
relation between the second moment and the variance, we derive the following
inequality:

E:
[
‖6: − ∇ 5 (G: )‖2

]
= E:

[
‖6: ‖2

]
=

1
<

<∑
8=1

 H808

1 + exp(H80>8 G)

2

≤ 1
<

=∑
8=1
‖08 ‖2 = f2.

That is, Assumption 3.1 holds with f defined above.
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Under Assumption 3.1 the analysis of SGD goes almost the same lines as the
analysis of Gradient Descent.

TODO for Eduard: put the definition of quasi strong convexity somewhere in the
text (I guess, we will have a special section for this).

Lemma 3.1 Let the objective function 5 be `-quasi strongly convex and !-smooth
and Assumption 3.1 holds. Assume that the stepsize W satisfies 0 < W < 1/!. Then,
for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G:+1 − G∗‖2

]
≤ (1 − W`)E

[
‖G: − G∗‖2

]
+ W2f2

−2W(1 − W!)E
[
5 (G: ) − 5 (G∗)

]
. (3.7)

Proof We start with expanding the square:

‖G:+1 − G∗‖2 = ‖G: − G∗ − W6: ‖2

= ‖G: − G∗‖2 − 2W〈G: − G∗, 6:〉 + W2‖6: ‖2.

Next, taking the conditional expectation E: [·] from the above inequality and using
the unbiasedness of 6: , we derive

E:
[
‖G:+1 − G∗‖2

]
= ‖G: − G∗‖2 − 2W〈G: − G∗,E: [6: ]〉 + W2E:

[
‖6: ‖2

]
(3.4)
= ‖G: − G∗‖2 − 2W〈G: − G∗,∇ 5 (G: )〉 + W2E:

[
‖6: ‖2

]
.

The second term from the right-hand side of the above inequality can be upper-
bounded using quasi-strong convexity of 5

−2W〈G: − G∗,∇ 5 (G: )〉 ≤ −2W
(
5 (G: ) − 5 (G∗)

)
− W`‖G: − G∗‖2,

and to bound the third term one can apply variance decomposition, Assumption 3.1,
and upper bound for the squared norm of the smooth function (Eduard: might be
better to create the list of basic inequalities to refer to them throughout the text)

W2E:
[
‖6: ‖2

]
= W2‖∇ 5 (G: )‖2 + W2E:

[
‖6: − ∇ 5 (G: )‖2

]
(3.5)
≤ W2‖∇ 5 (G: )‖2 + W2f2

≤ 2W2!
(
5 (G: ) − 5 (G∗)

)
+ W2f2. (3.8)

Putting all together, we get the following inequality

E:
[
‖G:+1 − G∗‖2

]
≤ (1 − W`)‖G: − G∗‖2 + W2f2

−2W(1 − W!)
(
5 (G: ) − 5 (G∗)

)
.

It remains to take the full expectation E[·] from the above inequality to get (3.7). �
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Using this lemma, one can derive several results about the convergence of SGD.
In this subsection, we cover the simplest one, but provide more results further.

Theorem 3.1 Let the objective function 5 be `-quasi strongly convex with ` > 0 and
!-smooth and Assumption 3.1 holds. Assume that the stepsize W satisfies 0 < W ≤ 1/!.
Then, for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): ‖G0 − G∗‖2 + Wf

2

`
. (3.9)

Proof Since 0 < W < 1/! the last term in the right-hand side of (3.7) is non-positive,
i.e., it can be omitted:

E
[
‖G:+1 − G∗‖2

]
≤ (1 − W`)E

[
‖G: − G∗‖2

]
+ W2f2.

Unrolling the recurrence, we get the result:

E
[
‖G:+1 − G∗‖2

]
≤ (1 − W`):+1‖G0 − G∗‖2 + W2f2

:∑
C=0
(1 − W`)C

≤ (1 − W`):+1‖G0 − G∗‖2 + W2f2
∞∑
C=0
(1 − W`)C

= (1 − W`):+1‖G0 − G∗‖2 + Wf
2

`
.

The above theorem establishes linear convergence of SGD to the neighborhood
of the solution. The rate of convergence depends on the stepsize and parameter
`: the larger stepsize is the faster the method converges. However, the size of the
neighborhood is proportional to the stepsize. Therefore, there is a certain trade-off:
for larger stepsize SGD converges faster but to larger neighborhood of the solution.

Eduard: I think it would be nice to put here some plots in order to illustrate the
idea better. For example, we can have 2d-plots like here https://fa.bianp.net/
teaching/2018/COMP-652/stochastic_gradient.html to illustrate that SGD
quickly reaches the neighborhood of the solution, but then it starts to oscillate around
the solution without the progress.

Next, we also notice that the neighborhood is proportional to the variance f2.
Therefore, to reach more accurate solution there are two main options:

1. Use smaller stepsizes (or decrease them using some schedule).
2. Use tighter estimator 6: (with lower variance).

In the first case, the method makes smaller progress at each iteration and, as a result,
converges slower but is able to reach tighter approximation of the solution. In Section
TODO for Eduard: put the reference to the right section in the future, we discuss in
detail some decreasing stepsize policies allowing to achieve the convergence to any
predefined accuracy of the solution.

https://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
https://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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In the second case, one needs to clarify how the tighter estimator is obtained.
Usually, it is done via a special trick called mini-batching. In the simplest case,
mini-batching is a way of choosing 6: such that

6: =
1
A

A∑
8=1

6:8 ,

where 6:1 , . . . , 6
:
A are i.i.d. samples from some distribution such that 6:

8
satisfies

Assumption 3.1 for all 8 = 1, . . . , A . If 6: is defined this way, we have

E:
[
6:

]
=

1
A

A∑
8=1
E:

[
6:8

]
=

1
A

A∑
8=1
∇ 5 (G: ) = ∇ 5 (G: ),

E:
[
‖6: − ∇ 5 (G: )‖2

]
= E:


1
A

A∑
8=1
(6:8 − ∇ 5 (G: ))

2
¬
=

1
A2

A∑
8=1
E:

[
‖6:8 − ∇ 5 (G: )‖2

] (3.5)
≤ f2

A
,

where¬ follows from the independence of 6:1 , . . . , 6
:
A . That is, mini-batched stochas-

tic gradient with batchsize A has A times smaller variance. Therefore, SGD with such
an estimator achieves A times better neighborhood of the solution, but each iteration
of the method requires A times more oracle calls than before. However, we emphasize
here that the increase of the oracle calls per iteration does not imply that the time
needed to execute the step of SGD is increased accordingly. When A is not too large,
then it is possible to organize mini-batch computation in a parallel way, e.g., using
GPU computations or distributed optimization that we will discuss in Section put
here the reference to the Section on parallel optimization.

Although the considered analysis of SGD provides some valuable insights about
methods behavior, the results are derived under quite restrictive assumption – As-
sumption 3.1. As we already noticed before, this assumption implies that the vari-
ance is uniformly bounded on the whole space. This is not the case even for simple
quadratic optimization problems.

In particular, consider the minimization problem

min
G∈R=

{
5 (G) = 1

<

<∑
8=1

58 (G)
}
, where 58 (G) =

1
2
G>�8G + 1>8 G,

where �8 ∈ R=×= are positive semidefinite, and, as in the example with logistic
regression, assume that 6: = ∇ 58: (G: ), where 8: is sampled uniformly at random
from {1, . . . , <} independently from the previous iterations. It is easy to check that
the quantity
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E:
[
‖6: − ∇ 5 (G: )‖2

]
=

1
<

<∑
8=1

�8G: + 18 − 1
<

<∑
9=1
(� 9G: + 1 9 )


2

=
1
<

<∑
8=1

 1
<

<∑
9=1

(
(�8 − � 9 )G: + 18 − 1 9

)
2

is unbounded unless �1 = �2 = . . . = �<, since G: can be arbitrarily far from the
origin. Therefore, even for such a good (convex, !-smooth) problem, Assumption 3.1
does not hold. To alleviate this issue, a different assumption is needed.

3.1.2 Analysis of SGD: Convex Smooth Stochastic Realizations

As an alternative to Assumption 3.1, consider the following

Assumption 3.2 (Convex Smooth Stochastic Trajectories) Stochastic gradient 6:
is computed as 6: = ∇ 5b : (G: ), where b: is sampled from some distribution indepen-
dently from previous iterations. Moreover, there exists a positive constant !max > 0
such that stochastic trajectory 5b (G) is convex and !max-smooth almost surely in b.

Unlike Assumption 3.1, the above one allows the variance E:
[
‖6: − ∇ 5 (G: )‖2

]
to be unbounded on the whole space and even grow when ‖G: − G∗‖2 → ∞.
However, Assumption 3.1 implies neither convexity nor smoothness of the stochastic
trajectories, allowing them to be arbitrary bad unless (3.5) is violated. Therefore, in
this particular aspect, Assumption 3.2 is more restrictive than Assumption 3.1.

Below we provide two examples when Assumption 3.2 is satisfied.

Linear Regression

Consider the classical linear regression problem:

min
G∈R=

1
2<
‖�G − H‖2, (3.10)

and � ∈ R<×=, H ∈ R=. For convenience, let us define the rows of matrix � as
01, . . . , 0< ∈ R=. Then, the above problem can be seen as a finite-sum minimization
problem:

min
G∈R=

{
5 (G) = 1

<

<∑
8=1

58 (G)
}
, where 58 (G) =

1
2
(0>8 G − H8)2. (3.11)

Here each function 58 is convex and !8-smooth with !8 = ‖08 ‖2, since ∇2 58 (G) =
080
>
8
, which is a positive semi-definitematrixwith the largest eigenvalue_max (080>8 ) =

‖08 ‖2. Therefore, Assumption 3.2 holds with !max = max8∈[<] !8 and b: being
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sampled uniformly at random from {1, . . . , <} independently from the previous
iterations.

Logistic Regression

In Section 3.1.1, we show that logistic regression problem (3.6) with standard
stochastic gradient (gradient of the summand picked uniformly at random) fits As-
sumption 3.1. It turns out that functions 58 (G) are !8-smooth with !8 = ‖08 ‖2.
Indeed, using matrix-vector differentiation, one can easily derive that

∇2 58 (G) =
1(

exp
(
− 1

2 H80
>
8
G

)
+ exp

(
1
2 H80

>
8
G

))2 080
>
8 ,

which is positive semi-definite. Next, since C + C−1 ≥ 2 for all C > 0, we
have _max (∇2 58 (G)) ≤ 1

4 ‖08 ‖
2. Therefore, Assumption 3.2 holds with !max =

max8∈[<] !8 and b: being sampled uniformly at random from {1, . . . , <} inde-
pendently from the previous iterations.

The analysis of SGD under Assumption 3.2 is quite similar to the one under
Assumption 3.1.

Lemma 3.2 Let the objective function 5 be `-quasi strongly convex and !-smooth
and Assumption 3.2 holds. Assume that the stepsize W satisfies 0 < W ≤ 1/2!max. Then,
for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G:+1 − G∗‖2

]
≤ (1 − W`)E

[
‖G: − G∗‖2

]
+ 2W2f2

∗

−2W(1 − 2W!max)E
[
5 (G: ) − 5 (G∗)

]
, (3.12)

where f2
∗ = Eb ‖∇ 5b (G∗)‖2.

Proof Following the same steps as in the proof of Lemma 3.1, we get

E:
[
‖G:+1 − G∗‖2

]
= ‖G: − G∗‖2 − 2W〈G: − G∗,∇ 5 (G: )〉 + W2E:

[
‖6: ‖2

]
.

Next, we apply `-quasi strong convexity

−2W〈G: − G∗,∇ 5 (G: )〉 ≤ −2W
(
5 (G: ) − 5 (G∗)

)
− W`‖G: − G∗‖2

and derive

E:
[
‖G:+1 − G∗‖2

]
= (1 − W`)‖G: − G∗‖2 − 2W

(
5 (G: ) − 5 (G∗)

)
+W2E:

[
‖6: ‖2

]
. (3.13)
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It remains to handle the last term. Assumption 3.2 says that 5b (G) is convex and
!max-smooth almost surely in b. Therefore, using the standard properties of convex
smooth functions, we obtain

E:
[
‖6: ‖2

]
= Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗) + ∇ 5b : (G∗)‖2

]
≤ 2Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗)‖2

]
+ 2Eb :

[
‖∇ 5b : (G∗)‖2

]
(B.10)
≤ 4!maxEb :

[
5b : (G: ) − 5b : (G∗) − 〈∇ 5b : (G∗), G: − G∗〉

]
+2Eb

[
‖∇ 5b (G∗)‖2

]
= 4!max

(
5 (G: ) − 5 (G∗) − 〈∇ 5 (G∗), G: − G∗〉

)
+ 2f2

∗

= 4!max

(
5 (G: ) − 5 (G∗)

)
+ 2f2

∗ , (3.14)

where in the fourth step we use Eb : [ 5b (G)] = 5 (G) and Eb [∇ 5b (G)] = ∇ 5 (G).
Together with (3.13) the obtained upper bound for E:

[
‖6: ‖2

]
give (3.12). �

This lemma implies several useful facts about the convergence of SGD. In partic-
ular, it implies the following

Theorem 3.2 Let the objective function 5 be `-quasi strongly convex with ` > 0
and !-smooth and Assumption 3.2 holds. Assume that the stepsize W satisfies 0 <

W < 1/2!max. Then, for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): ‖G0 − G∗‖2 + 2Wf2

∗
`

, (3.15)

where f2
∗ = Eb ‖∇ 5b (G∗)‖2.

Proof Given Lemma 3.2, the proof is identical to the proof of Theorem 3.1 up to
the following changes: ! → !max and f → f∗. �

Similarly to Theorem 3.1, the above result establishes linear convergence of SGD
to the neighborhood of the solution and similar observations are valid. The main
differences can be summarized as follows: 1) the upper bound for W is smaller in
Theorem3.2, than inTheorem3.1, and 2) the size of the neighborhood inTheorem3.2
is proportional to the variance of the stochastic gradient at the solution, while in
Theorem 3.1 this size is proportional to the uniform upper bound on the variance
f2 ≥ f2

∗ .

3.1.3 SGD for Finite-Sum Problems and Variance Reduction

Finite-sum problems

min
G∈R=

{
5 (G) = 1

<

<∑
8=1

58 (G)
}

(3.16)
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is an important special case of (3.1): it is sufficient to take b as a random integer
uniformly distributed on {1, . . . , <}. Assume that 58 (G) is convex and !8-smooth
for each 8 ∈ [<]. Then, two examples that we consider in the previous subsection
– linear and logistic regression – fall in this setup. Moreover, Assumption 3.2 holds
with !max = max8∈[<] !8 and Theorem 3.2 implies the following result.

Theorem 3.3 Let the objective function 5 be `-quasi strongly convex with ` > 0
and !-smooth, has a finite-sum form (3.16), and summands 58 be convex and !8-
smooth functions. Assume that the stepsize W satisfies 0 < W ≤ 1/2!max, where
!max = max8∈[<] !8 . Then, for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): ‖G0 − G∗‖2 + 2Wf2

∗
`

, (3.17)

where f2
∗ =

1
<

∑<
8=1 ‖∇ 58 (G∗)‖2.

Although the implications of this result are discussed in the previous subsection
(after Theorem 3.2), it is important to write it explicitly for the future comparison
with more sophisticated algorithms. So far, we consider a quite straightforward
way of generating unbiased estimator 6: for SGD: 6: = ∇ 5b : (G: ), where b: is
picked uniformly at random from {1, . . . , <} independently from previous steps. In
particular, when W = 1/2!max SGD converges to some neighborhood of the solution
after Õ(!max/`) iterations/oracle calls. In contrast, GD requires Õ(<!/`) oracle calls
to converge to any predefined accuracy of the solution. One can show that ! ≤
!max ≤ <!, meaning that in the worst case there is no benefit in using SGD.
However, when !max = O(!) SGD is < times faster (in terms of the oracle calls)
thanGD in finding not too accurate approximation of the solution. Therefore, when<
is big, the difference between two methods behavior might be significant. However,
SGD with constant stepsize does not achieve any predefined accuracy of the solution
with linear rate. It leads us to the natural question: are there any stochastic methods
for solving (3.16) that have linear convergence to the exact solution asymptotically?

It turns out that the answer to the above question is positive and the key to
construct such a method is in changing the formula for 6: . The general idea is to add
something to 6: that is zero in expectation but reduces the variance:

6: = ∇ 5b : (G: ) + B: , where E: [B: ] = 0.

Moreover, it is important to have B: such that it requires a comparable number of
oracle calls with∇ 5b : (G: ) needed for computation. Finally, it is crucial to ensure that
the variance of estimator 6: reduces during the work of the method. In particular,
it implies that E[‖6: ‖2] should converge to zero since E[‖G: − G∗‖2] converges
to zero. This partially explains, why SGD in all the setups considered above does
not converge linearly to the solution: upper bounds (3.8) and (3.14) for E: [‖6: ‖2]
contain constant terms proportional either to f2 or to f2

∗ .
Taking these observations into account, one can set B: = −∇ 5b : (|: ) + ∇ 5 (|: ),

where the point |: is updated from time to time and b: does not depend on |: .
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Then, we have

6: = ∇ 5b : (G: ) − ∇ 5b : (|: ) + ∇ 5 (|: ), (3.18)

E: [6: ] =
1
<

<∑
8=1

(
∇ 58 (G: ) − ∇ 58 (|: ) + ∇ 5 (|: )

)
= ∇ 5 (G: ),

i.e., unbiasedness is satisfied. Next, 6: should require a comparable number of oracle
calls with ∇ 5b : (G: ) needed for computation. We make the following observation: if
|: = |:−1, then ∇ 5 (|: ) can be taken from the previous iteration, i.e., full gradient
computations are needed iff |: is updated. Therefore, |: should be updated rarely,
e.g., one can set |:+1 as G: once per every 1 ∼ < iterations:

|:+1 =

{
|: , if : + 1 mod 1 ≠ 0,
G:+1, if : + 1 mod 1 = 0.

(3.19)

The resulting method, i.e., SGD (3.3) with 6: defined in (3.18) and |: given in
(3.19), is called Stochastic Variance Reduced Gradient (SVRG) and the parameter
1 is usually called inner loop size. The oracle cost of 1 subsequent steps of SVRG
equals 2 · (1 − 1) + (< + 2) · 1 = 21 +<, while for SGD it equals 1. Therefore, when
1 ≥ <, the oracle costs of running SVRG and SGD for  ≥ < iterations are the
same (up to numerical factor of 3).

Finally, the choice of |: from (3.19) is promising for the following reason.
Assume that we proved that the iterates of SVRG satisfy E[‖G: − G∗‖2] → 0. Then,
we also have that E[‖|: − G∗‖2] → 0 and E[‖|: − G: ‖2] → 0 due to (3.19).
Since ∇ 58 (G) is Lipschitz continuous, we have E[‖∇ 58 (G: ) − ∇ 58 (|: )‖2] → 0 for
all 8 ∈ [<] and E[‖∇ 5 (|: )‖2] → 0. That is why E[‖6: ‖2] converges to 0 as well,
i.e., the variance of the estimator reduces during the work of the method.

It remains to formalize the observations enough to get a rigorous proof of con-
vergence. However, for simplicity, we will analyze a slightly different method called
Loopless Stochastic Variance Reduced Gradient (L-SVRG). The key difference be-
tween L-SVRG and SVRG is in the choice of |: : while SVRG updates |: once per
every 1 ∼ < iterations, L-SVRG does it at each iteration with probability ? ∼ 1/<,
which is typically small. In other words, instead of (3.19) L-SVRG relies on the
following update rule for |: :

|:+1 =

{
|: , with probability 1 − ?,
G: , with probability ?.

(3.20)

L-SVRG can be seen as SVRG with random inner loop sizes having geometrical
distribution with parameter ?. If ? ∼ 1/<, all intuition regarding SVRG is valid for
L-SVRG as well. In particular, when ? = 1/<, the expected oracle cost of 1 iteration
of L-SVRG equals 2 · (1 − ?) + (< + 2) · ? = 2 + <? = 3, which is comparable with
the oracle cost of the one step of SGD.
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As we mention before, it is crucial to derive good upper bound for E: [‖6: ‖2]
that does not contain constant terms like f2 or f2

∗ from the analysis of SGD. The
following lemma provides such an upper bound.

Lemma 3.3 Let 58 be convex and !8-smooth for all 8 ∈ [<]. Then, for all : ≥ 0 the
iterates produced by L-SVRG satisfy

E:
[
‖6: ‖2

]
≤ 4!max

(
5 (G: ) − 5 (G∗)

)
+ 2f2

: , (3.21)

where f2
:
= 1
<

∑<
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗)‖2.

Proof Using the definition of 6: (3.18) and a well-known fact that ‖0 + 1‖2 ≤
2‖0‖2 + 2‖1‖2 for all 0, 1 ∈ R=, we derive

E:
[
‖6: ‖2

]
= Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (|: ) + ∇ 5 (|: )‖2

]
=

1
<

<∑
8=1
‖∇ 58 (G: ) − ∇ 58 (|: ) + ∇ 5 (|: )‖2

=
1
<

<∑
8=1
‖∇ 58 (G: ) − ∇ 58 (G∗) + ∇ 58 (G∗) − ∇ 58 (|: ) + ∇ 5 (|: )‖2

≤ 2
<

<∑
8=1
‖∇ 58 (G: ) − ∇ 58 (G∗)‖2

+ 2
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗) − ∇ 5 (|: )‖2.

To bound the first term in the right-hand side of the above inequality, we apply
(B.10):

E:
[
‖6: ‖2

]
≤ 4
<

<∑
8=1

!8

(
58 (G: ) − 58 (G∗) − 〈∇ 58 (G: ), G: − G∗〉

)
+ 2
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗) − ∇ 5 (|: )‖2

≤ 4!max

(
5 (G: ) − 5 (G∗)

)
(3.22)

+ 2
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗) − ∇ 5 (|: )‖2. (3.23)

Next, the last term can be considered as the variance of ∇ 5b (|: ) −∇ 5b (G∗) for fixed
|: and b having an uniform distribution on {1, 2, . . . , <}. Since the variance is not
bigger than the second moment, we can continue our derivation as

E
[
‖6: ‖2 | G:

]
≤ 4!max

(
5 (G: ) − 5 (G∗)

)
+ 2
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗)‖2.
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Taking into account that f2
:
= 1
=

∑=
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗)‖2, we get the result. �

Next, it is important to show that f2
:
converges (in expectation) to zero. An

important step to achieve this goal is in deriving a good upper bound for E: [f2
:+1].

Lemma 3.4 Let 58 be convex and !8-smooth for all 8 ∈ [<]. Then, for all : ≥ 0 the
iterates produced by L-SVRG satisfy

E:
[
f2
:+1

]
≤ (1 − ?)f2

: + 2?!max

(
5 (G: ) − 5 (G∗)

)
, (3.24)

where f2
:
= 1
<

∑<
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗)‖2.

Proof By definition of |: (3.20), we have

E:
[
f2
:+1

]
=

1
<

<∑
8=1
E:

[
‖∇ 58 (|:+1) − ∇ 58 (G∗)‖2

]
=

1 − ?
=

=∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗)‖2

+ ?
<

<∑
8=1
‖∇ 58 (G: ) − ∇ 58 (G∗)‖2

= (1 − ?)f2
: +

?

<

<∑
8=1
‖∇ 58 (G: ) − ∇ 58 (G∗)‖2.

Applying (B.10) to the above inequality, we derive

E:
[
f2
:+1

]
≤ (1 − ?)f2

: +
?

<

<∑
8=1

2!8
(
58 (G: ) − 58 (G∗) − 〈∇ 58 (G: ), G: − G∗〉

)
≤ (1 − ?)f2

: + 2?!max

(
5 (G: ) − 5 (G∗)

)
, (3.25)

which concludes the proof. �

Finally, it remains to combine the bounds from Lemmas 3.3 and 3.4.

Theorem 3.4 Let the objective function 5 be `-quasi strongly convex with ` > 0
and !-smooth, has a finite-sum form (3.16), and summands 58 be convex and !8-
smooth functions. Assume that the stepsize W satisfies 0 < W ≤ 1/6!max, where
!max = max8∈[<] !8 . Then, for each : ≥ 0 the iterations of L-SVRG satisfy

E [+: ] ≤
(
1 −min

{
W`,

?

2

}) :
+0, (3.26)

where +: = ‖G: − G∗‖2 + 4W2

?
f2
:
and f2

:
= 1
<

∑<
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗)‖2.
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Proof We start with noticing that inequality (3.13) is derived for SGD based on
three facts: (1) G:+1 = G: − W6: , (2) 6: is an unbiased estimate of ∇ 5 (G: ) for fixed
G: , and (3) function 5 is `-quasi strongly convex. These three properties hold in the
setup we consider right now. Therefore, we have

E:
[
‖G:+1 − G∗‖2

] (3.13)
≤ (1 − W`)‖G: − G∗‖2 − 2W

(
5 (G: ) − 5 (G∗)

)
+W2E:

[
‖6: ‖2

]
.

Next, we apply Lemma 3.3 to upper bound E:
[
‖6: ‖2

]
and rearrange the terms:

E:
[
‖G:+1 − G∗‖2

] (3.21)
≤ (1 − W`)‖G: − G∗‖2 − 2W

(
5 (G: ) − 5 (G∗)

)
+W2

(
4!max

(
5 (G: ) − 5 (G∗)

)
+ 2f2

:

)
= (1 − W`)‖G: − G∗‖2 + 2W2f2

:

−2W (1 − 2W!max)
(
5 (G: ) − 5 (G∗)

)
.

Summing up the above inequality with 4W2

?
-multiple of (3.24), we get

E:

[
‖G:+1 − G∗‖2 + 4W2

?
f2
:+1︸                          ︷︷                          ︸

+:+1

]
≤ (1 − W`)‖G: − G∗‖2 + 2W2f2

:

−2W (1 − 2W!max)
(
5 (G: ) − 5 (G∗)

)
+4W2

?

(
(1 − ?)f2

: + 2?!max

(
5 (G: ) − 5 (G∗)

))
= (1 − W`)‖G: − G∗‖2 +

(
1 − ?

2

) 4W2

?
f2
:

−2W (1 − 6W!max)
(
5 (G: ) − 5 (G∗)

)
≤

(
1 −min

{
W`,

?

2

}) (
‖G: − G∗‖2 + 4W2

?
f2
:︸                    ︷︷                    ︸

+:

)
,

where in the last step we use 0 < W ≤ 1/6!max ⇒ 2W (1 − 6W!max)
(
5 (G: ) − 5 (G∗)

)
≥

0. Finally, we take the full expectation from the obtained inequality, unroll the
recurrence, and get (3.26). �

Let us discuss the obtained result and compare it with the result for SGD (The-
orem 3.3). First of all, unlike the convergence guarantee for SGD, the guarantee
for L-SVRG is given in terms of the Lyapunov function +: = ‖G: − G∗‖2 + 4W2

?
f2
:
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(in expectation). Of course, since f2
:
≥ 0, inequality (3.26) gives an upper bound

for E[‖G: − G∗‖2] as well. However, it also implies that E[f2
:
] converges to zero

supporting the intuition behind the method and this quantity, in particular. Moreover,
one could guess the form of the Lyapunov function +: from the discussion around
Lemmas 3.3 and 3.4.

Next, perhaps, the most important difference between SGD and LSVRG is that the
latter one converges linearly to the exact solution (asymptotically, in expectation)
unlike SGD that converges linearly only to some neighborhood of the solution. To
illustrate this phenomenon better, we consider the following example.

L-SVRG vs SGD: Solving Logistic Regression with ℓ2-Regularization

TODO for Eduard: write about the details.

0 5 10 15 20 25 30
Number of passes through the data

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k )

f(x
* )

f(x
0 )

f(x
* )

gisette
SGD
SVRG

Fig. 3.1: TODO for Eduard: replace this figure by the polished one. Write a caption.

Finally, it remains to derive an explicit complexity upper bound for L-SVRG.

Corollary 3.1 Let the assumptions of Theorem 3.4 hold. Assume that W = 1/6!max and
? = 1/<. Then, to ensure E[‖G: − G∗‖2] ≤ Y, L-SVRG requires

O
((
< + !max

`

)
log

+0
Y

)
(3.27)

oracle calls in expectation.

Proof When W = 1/6!max and ? = 1/<, Theorem 3.4 implies
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E[‖G: − G∗‖2] ≤ E [+: ] ≤
(
1 −min

{
W`,

?

2

}) :
+0

=

(
1 −min

{
`

6!max
,

1
2<

}) :
+0

≤ exp
(
−min

{
`

6!max
,

1
2<

}
:

)
+0.

Therefore, after

: = O
(
max

{
!max
`

, <

}
log

+0
Y

)
= O

((
< + !max

`

)
log

+0
Y

)
iteration L-SVRG guarantees that E[‖G: − G∗‖2] ≤ Y. Taking into account that the
expected total number of oracle calls equals < + O(:), we get the result. �

In contrast, GD has O
(
< !
`

log ‖G
0−G∗ ‖2
Y

)
oracle complexity, where ! is the

smoothness constant of function 5 . Since ! ≤ !max ≤ <!, in the worst case, L-
SVRG has the same oracle complexity as GD up to the differences in the logarithmic
factor. However, when !max = O(!), the complexity of L-SVRG is much better than
the one of GD, especially when < is large.

It is worth mentioning that the similar result holds for SVRG as well. Moreover,
there exists another popular variance reducedmethod calledSAGA. Instead of storing
one vector, SAGA stores < vectors {∇ 58 (|:8 )}<8=1 corresponding to the gradients of
summands at the points where they were computed last time before the iteration : .
More formally, SAGA has the same update rule as SGD (3.3) with

6: = ∇ 5b : (G: ) − ∇ 5b : (|:8 ) +
1
<

<∑
8=1
∇ 58 (|:8 ), (3.28)

|0
8 = G

0, |:+18 =

{
G: , if 8 = b: ,
|:
8
, if 8 ≠ b: ,

8 = 1, . . . , <, (3.29)

where b: is sampled uniformly at random from {1, . . . , <} independently from
previous steps. One can easily show that E: [6: ] = ∇ 5 (G: ) in this case as well.
Moreover, the convergence guarantees for SAGA are identical to the ones for L-
SVRG and even can be proven using similar steps. However, SAGA and L-SVRG
have some important difference. Unlike SVRG/L-SVRG, SAGA does not require the
computation of the full gradient during its work (although one needs to compute
initial vectors {∇ 58 (|0

8
)}<
8=1). In this aspect, SAGA is better than SVRG/L-SVRG but

it has a disadvantage as well: one needs to store < vectors {∇ 58 (|:8 )}<8=1 to use the
method. When < and = are large, the storage of < vectors might be infeasible.
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3.1.4 Unified Analysis of SGD

The proofs from the previous subsections have a lot of similarities: in all of them,
we apply simple facts based on the recursion G:+1 = G: − W6: , derive upper bounds
for E: [‖6: ‖2], and in some cases, derive another auxiliary inequality to handle
the variance terms (like in the proof for L-SVRG). Therefore, for the ease of fur-
ther discussion and establishing the connections between different methods, in this
subsection, we focus on an unified analysis of SGD.

First of all, we will consider a more general class of problems – compos-
ite/regularized optimization problems:

min
G∈R=
{ 5ℎ (G) = 5 (G) + ℎ(G)} , (3.30)

where function 5 (G) : R= → R is (`, G∗)-quasi strongly convex and !-smooth, G∗
is a minimizer of 5ℎ , and function ℎ(G) : R= → R is a proper lower semicontinu-
ous convex function called regularization/composite term. Moreover, function ℎ is
assumed to have simple structure, i.e., the proximal operator associated with ℎ

proxℎ (G) = argmin
H∈R=

{
ℎ(H) + 1

2
‖H − G‖2

}
(3.31)

should be easy to compute for any G ∈ R=. The problems of this type are quite
general, e.g., they include constrained optimization problems and problems with
sparsity-inducing penalties (see the details in Appendix TODO: add the reference to
the necessary section).

TODO: we should add a section in the appendix about composite minimization
problems and proximal operators.

As before, we assume that function 5 has either an expectation

5 (G) = Eb∼D [ 5b (G)] (3.32)

or a finite-sum form

5 (G) = 1
<

<∑
8=1

58 (G), (3.33)

and is accessible through the unbiased estimate 6: of the full gradient: E: [6: ] =
∇ 5 (G: ). Next, SGD in this case has slightly different update rule:

G:+1 = proxW:ℎ
(
G: − W:6:

)
. (3.34)

The above update rule takes into account the information about function 5 through
the usage of 6: and about function ℎ – through the computing proximal operator
from the right-hand side of the update rule (3.3) considered previously. The method
from (3.34) is usually calledProx-SGD, but for simplicity wewill refer to this method
as SGD.
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Now, we are ready to introduce a general parametric assumption for the unified
analysis of SGD.

Assumption 3.3 (Unified parametric assumption) Let {G: }:≥0 be the iterates gen-
erated by SGD from (3.34). We assume that for all : ≥ 0 estimator 6: is unbiased
estimate of the gradient: E: [6: ] = ∇ 5 (G: ). Moreover, we assume that there exist
non-negative constants �, �, �, �1, �2 ≥ 0, d ∈ (0, 1], and a (possibly) random
sequence {f2

:
}:≥0 such that f: can only depend on the randomness from iterations

0, . . . , : − 1 and the following two inequalities hold for all : ≥ 0:

E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 2�+ 5 (G: , G∗) + �f2

: + �1, (3.35)
E:

[
f2
:+1

]
≤ (1 − d)f2

: + 2�+ 5 (G: , G∗) + �2, (3.36)

where + 5 (G, H) = 5 (G) − 5 (H) − 〈∇ 5 (H), G − H〉 is a Bregman divergence associated
with function 5 .

As wewill see next, this assumptions covers all the setups considered above in this
chapter and even more. First of all, let us discuss inequality (3.35). It can be seen as
a unification of the typical bounds for E: [‖6: ‖2] arising in the analysis of standard
SGD (3.8), (3.14) and L-SVRG (3.21) for the special case of (3.30) with ℎ(G) ≡ 0.
However, in the general case, one has to take into account that ∇ 5 (G∗) ≠ 0, which
is reflected in the both sides of inequality (3.35). Next, inequality (3.36) describes a
variance reduction process similarly to (3.24) for L-SVRG.

From these connections with the inequalities derived earlier in this chapter one
can conjecture that constants � and � are related to the smoothness properties of
the problem, �1 and �2 are some noises that are not handed by variance reduction
mechanism, � is typically a numerical constant, and d is the “rate” of the variance
reduction. In fact, this is a quite tight description of the parameters from Assump-
tion 3.3. Before we move on to the analysis under this assumption, we provide formal
proofs that SGD under Assumptions 3.1, 3.2 and L-SVRG fit it.

SGD under Uniformly Bounded Variance Assumption

Consider the case when 5 is convex, !-smooth, and Assumption 3.1 holds. Then,
following exactly the same steps as in the proof of (3.8), we derive

E:
[
‖6: − ∇ 5 (G∗)‖2

]
= ‖∇ 5 (G: ) − ∇ 5 (G∗)‖2 + E:

[
‖6: − ∇ 5 (G: )‖2

]
(3.5)
≤ ‖∇ 5 (G: ) − ∇ 5 (G∗)‖2 + f2

(B.10)
≤ 2!+ 5 (G: , G∗) + f2.

That is, in this case, SGD satisfies Assumption 3.3 with the following parameters:

� = !, � = 0, � = 0, �1 = f
2, d = 1, f2

: ≡ 0, �2 = 0. (3.37)
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SGD under Convex Smooth Stochastic Trajectories Assumption

Let 5 be convex, !-smooth, and let Assumption 3.2 hold. Then, following exactly
the same steps as in the proof of (3.14), we derive

E:
[
‖6: − ∇ 5 (G∗)‖2

]
= Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗) + ∇ 5b : (G∗) − ∇ 5 (G∗)‖2

]
≤ 2Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗)‖2

]
+2Eb :

[
‖∇ 5b : (G∗) − ∇ 5 (G∗)‖2

]
(B.10)
≤ 4!maxEb :

[
5b : (G: ) − 5b : (G∗) − 〈∇ 5b : (G∗), G: − G∗〉

]
+2Eb

[
‖∇ 5b (G∗) − ∇ 5 (G∗)‖2

]
= 4!max

(
5 (G: ) − 5 (G∗) − 〈∇ 5 (G∗), G: − G∗〉

)
+ 2f2

∗

= 4!max+ 5 (G: , G∗) + 2f2
∗ ,

where f2
∗ = Eb [‖∇ 5b (G∗) −∇ 5 (G∗)‖2]. That is, in this case, SGD satisfies Assump-

tion 3.3 with the following parameters:

� = 2!max, � = 0, � = 0, �1 = 2f2
∗ , d = 1, f2

: ≡ 0, �2 = 0. (3.38)

L-SVRG for the Finite Sums of Smooth Convex Functions

Assume that 5 has a finite sum structure (3.33) and 58 is convex and !8-smooth for all
8 = 1, . . . , <. Then, to show that inequalities (3.35) and (3.36) hold for L-SVRG in this
case one can apply almost the same sequence of steps as in the proofs of Lemmas 3.3
and 3.4. In particular, estimating E: [‖6: − ∇ 5 (G∗)‖2] instead of E: [‖6: ‖2] one
will get + 5 (G: , G∗) instead of 5 (G: ) − 5 (G∗) in (3.22) (since 1

<

∑<
8=1 ∇ 58 (G∗) =

∇ 5 (G∗) ≠ 0) and 2
<

∑<
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗) − (∇ 5 (|: ) − ∇ 5 (G∗))‖2 instead of

2
<

∑<
8=1 ‖∇ 58 (|: ) − ∇ 58 (G∗) − ∇ 5 (|: )‖2 in (3.23). Next, the proof of inequality

E:
[
f2
:+1

]
≤ (1 − ?)f2

: + 2?!max+ 5 (G: , G∗)

is identical to the proof of (3.24) up to the following change: in (3.25), one should
take into account that 1

<

∑<
8=1 ∇ 58 (G∗) = ∇ 5 (G∗) ≠ 0.

Therefore, in this setup, L-SVRG satisfies Assumption 3.3 with the following
parameters:

� = 2!max, � = 2, f2
: =

1
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗)‖2, �1 = 0,

� = ?!max, d = ?, �2 = 0. (3.39)
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Under Assumption 3.3 and `-quasi strong convexity of 5 the following result
holds.

Theorem 3.5 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` > 0, + 5 (G, G∗) ≥ 0 for all1 G ∈ R=, and Assumption 3.3 hold. Assume that the
stepsize W: = W satisfies

0 < W ≤ min
{

1
`
,

1
� + �"

}
, (3.40)

where " > �/d. Then, for each : ≥ 0 the iterations of the method from (3.34) satisfy

E [+: ] ≤
(
1 −min

{
W`, d − �

"

}) :
E[+0] +

W2 (�1 + "�2)
min

{
W`, d − �

"

} , (3.41)

where +: = ‖G: − G∗‖2 + "W2f2
:
.

Proof Due to non-expansiveness of proximal operator and fixed point property
G∗ = proxWℎ (G∗ − W∇ 5 (G∗)) we have TODO: add here the reference to the appendix
with properties of prox-operator

‖G:+1 − G∗‖2 =
proxWℎ (G: − W6: ) − proxWℎ (G∗ − W∇ 5 (G∗))2

≤ ‖G: − W6: − (G∗ − W∇ 5 (G∗))‖2

= ‖G: − G∗‖2 − 2W〈G: − G∗, 6: − ∇ 5 (G∗)〉 + W2‖6: − ∇ 5 (G∗)‖2.

Next, we take conditional expectation from the above inequality and apply (3.35)
from Assumption 3.3:

E:
[
‖G:+1 − G∗‖2

]
= ‖G: − G∗‖2 − 2WE:

[
〈G: − G∗, 6: − ∇ 5 (G∗)〉

]
+W2E:

[
‖6: − ∇ 5 (G∗)‖2

]
= ‖G: − G∗‖2 − 2W〈G: − G∗,∇ 5 (G: ) − ∇ 5 (G∗)〉

+W2E:
[
‖6: − ∇ 5 (G∗)‖2

]
(3.35)
≤ ‖G: − G∗‖2 − 2W〈G: − G∗,∇ 5 (G: ) − ∇ 5 (G∗)〉

+W2
(
2�+ 5 (G: , G∗) + �f2

: + �1

)
.

Function 5 is (`, G∗)-quasi strongly convex. This implies that

〈G: − G∗,∇ 5 (G: ) − ∇ 5 (G∗)〉 ≥ + 5 (G: , G∗) +
`

2
‖G: − G∗‖2.

Therefore, we have

1 To guarantee +5 (G, G∗) ≥ 0 it is sufficient to assume convexity of 5 .
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E:
[
‖G:+1 − G∗‖2

]
≤ (1 − W`) ‖G: − G∗‖2 − 2W (1 − �W)+ 5 (G: , G∗)
+W2�f2

: + W
2�1.

Summing up the above inequality with "W2-multiple of (3.36) and using +: =
‖G: − G∗‖2 + "W2f2

:
, we derive

E: [+:+1] = E:
[
‖G:+1 − G∗‖2 + "W2f2

:+1
]

(3.36)
≤ (1 − W`) ‖G: − G∗‖2 − 2W (1 − �W)+ 5 (G: , G∗)

+W2�f2
: + W

2�1 + "W2
(
(1 − d)f2

: + 2�+ 5 (G: , G∗) + �2

)
= (1 − W`) ‖G: − G∗‖2 + "W2

(
1 − d + �

"

)
f2
:

−2W (1 − W(� + �"))+ 5 (G: , G∗) + W2 (�1 + "�2) (3.42)

≤
(
1 −min

{
W`, d − �

"

}) (
‖G: − G∗‖2 + "W2f2

:

)
︸                        ︷︷                        ︸

+:

+W2 (�1 + "�2),

where in the last step we use 0 < W ≤ 1/(�+�" ) and + 5 (G: , G∗) ≥ 0. Next, we take
the full expectation

E[+:+1] ≤
(
1 −min

{
W`, d − �

"

})
E[+: ] + W2 (�1 + "�2) (3.43)

and unroll the obtained recurrence

E[+: ] ≤
(
1 −min

{
W`, d − �

"

}) :
E[+0]

+W2 (�1 + "�2)
:−1∑
C=0

(
1 −min

{
W`, d − �

"

}) C
≤

(
1 −min

{
W`, d − �

"

}) :
E[+0]

+W2 (�1 + "�2)
∞∑
C=0

(
1 −min

{
W`, d − �

"

}) C
=

(
1 −min

{
W`, d − �

"

}) :
E[+0] +

W2 (�1 + "�2)
min

{
W`, d − �

"

} .
which finishes the proof. �

As in the previous results of this Chapter, the above theorem establishes linear
convergence of the method to some neighborhood that depends on the parameters
fromAssumption 3.3, parameter `, and stepsize W. Taking into account the examples
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given before Theorem 3.5, one can easily notice that the above theorem recovers the
results for SGD and L-SVRG derived in Sections 3.1.1-3.1.3. Moreover, as we will
see further in this Chapter, this approach recovers many other results for SGD-like
methods.

However, before we start our consideration of special cases, it is useful to derive
another general result – for the case when ` = 0. Although it is possible to derive
the result in the same generality as we have for the case when ` > 0, in the next
theorem, for simplicity we assume that the composite term is zero, i.e., '(G) ≡ 0.

Theorem 3.6 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` ≥ 0, '(G) ≡ 0, and Assumption 3.3 hold. Assume that the stepsize W: = W satisfies

0 < W ≤ min
{

1
`
,

1
2(� + �")

}
, (3.44)

where " > �/d. Then, for each : ≥ 0 the iterations of the method from (3.34) satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ E[+0]
W, 

+ W(�1 + "�2), (3.45)

where G = 1
, 

∑ 
:=0 |:G

: ,|: = (1−[)−(:+1) ,, =
∑ 
:=0 |: , [ = min

{
W`, d − �

"

}
,

+: = ‖G: − G∗‖2 + "W2f2
:
. In particular,

E
[
5 (G ) − 5 (G∗)

]
≤ (1 − [) +1 E[+0]

W
+ W(�1 + "�2), when ` > 0,(3.46)

E
[
5 (G ) − 5 (G∗)

]
≤ E[+0]
W( + 1) + W(�1 + "�2), when ` = 0. (3.47)

Proof We notice that in the proof of Theorem 3.5, we derived inequality (3.42) that
holds in the setting of Theorem 3.6 as well. Taking into account that + 5 (G: , G∗) =
5 (G: ) − 5 (G∗) because of '(G) ≡ 0, we have

E: [+:+1] ≤
(
1 −min

{
W`, d − �

"

})
+: + W2 (�1 + "�2)

−2W (1 − W(� + �"))
(
5 (G: ) − 5 (G∗)

)
(3.44)
≤ (1 − [)+: + W2 (�1 + "�2) − W

(
5 (G: ) − 5 (G∗)

)
,

where [ = min
{
W`, d − �

"

}
. Taking the full expectation and rearranging the terms,

we get

WE
[
5 (G: ) − 5 (G∗)

]
≤ (1 − [)E[+: ] − E[+:+1] + W2 (�1 + "�2). (3.48)

Next, we sum up the above inequality for : = 0, . . . ,  with weights |: and divide
the result by W, :
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E

[
 ∑
:=0

|:

, 
( 5 (G: ) − 5 (G∗))

]
≤ 1
W, 

 ∑
:=0
((1 − [)|:E[+: ] − |:E[+:+1])

+W(�1 + "�2)
, 

 ∑
:=0

|:

=
1

W, 

 ∑
:=0
(|:−1E[+: ] − |:E[+:+1])

+W(�1 + "�2)

≤ E[+0]
W, 

+ W(�1 + "�2),

where in the last step we use |−1 = 1 and | E[+ +1] ≥ 0. Applying Jensen’s
inequality, we derive (3.45). When ` > 0, we have , ≥ | = (1 − [)−( +1)
implying (3.46). In the case of ` = 0, we have, =  + 1 implying (3.47). �

The above result is derived for the case of ` > 0 and ` = 0 simultaneously.
When ` > 0, the above theorem implies that in terms of the expected functional
suboptimality SGD converges exponentially fast to some accuracy depending on the
stepsize W and noises �1, �2. In view of Theorem 3.5, such a behavior is expected
and very similar to the convergence of expected squared distance to the solution,
when ` > 0. Since E[‖G: − G∗‖2] is not a valid metric of the convergence when
` = 0, we consider the expected functional suboptimality in this case. In this case,
SGD converges with rate O(1/ ) to the accuracy W(�1 + "�2) depending on the
stepsize W and noises �1, �2.

Theorems 3.5 and 3.6 provide the convergence guarantees for SGD under quite
general assumptions. These guarantees establish the convergence only to some neigh-
borhood/accuracy of the solution. To achieve any predefined accuracy Y > 0 one
needs to adjust stepsize W accordingly. In the following subsection, we focus on thus
aspect.

3.1.4.1 On the Choice of Stepsizes

We start with the general lemma for handling typical recurrences appearing in the
convergence analysis of SGD-like methods.

Lemma 3.5 (Lemma 3 from [124]) Assume that the non-negative sequences
{A: }:≥0, {B: }:≥0 satisfy the recursion

A:+1 ≤ (1 − 0W: )A: − 1W: B: + 2W2
: (3.49)

for : ≥ 0, where 0 > 0, 2 ≥ 0 and {W: }:≥0 is a non-negative sequence satisfying
W: ≤ 1/C for some C ≥ 0. Then, for any  ≥ 2 one can choose {W: }:≥0 and sequence
{|: }:≥0 as follows:
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if  ≤ C

0
, W: =

1
C
, |: =

(
1 − 0

C

)−(:+1)
,

if  >
C

0
and : < :0, W: =

1
C
, |: = 0,

if  >
C

0
and : ≥ :0, W: =

2
0 (^+:−:0) , |: = ^ + : − :0,

where ^ = 2C/0 and :0 = d /2e. For this choice of W: the following inequality holds:

1

, 

 ∑
:=0

|: B: + 0A +1 ≤ 128CA0 exp
(
−0 

2C

)
+ 722
0 

,

where, =
∑ 
:=0 |: .

Proof Consider the first case:  ≤ C/0. In this case, W: = W = 1/C and |: =

(1 − 0/C)−(:+1) = (1 − 0W)−(:+1) . Multiplying (3.49) by |:/W and rearranging the
terms, we get

1|: B: ≤
|: (1 − 0W)A:

W
− |:A:+1

W
+ 2W|: =

|:−1A:
W

− |:A:+1
W
+ 2W|: ,

where for : = 0 the weight |:−1 is defined as |−1 = 1. Next, we sum up the above
inequality from : = 0 to : =  and obtain

1

, 

 ∑
:=0

|: B: ≤
1
, 

 ∑
:=0

(
|:−1A:
W

− |:A:+1
W

)
+ 2W 1

, 

 ∑
:=0

|:

=
A0
W, 

− | A +1
W, 

+ 2W.

Since, =
∑ 
:=0 (1− 0W)−(:+1) = (1− 0W)−( +1)

∑ 
:=0 (1− 0W): ≤ 1

0W (1−0W) +1 ≤
1
0W

and, ≥ | = (1− 0W)−( +1) ≤ exp(−0W( + 1)), we can continue the above
derivation as follows:

1

, 

 ∑
:=0

|: B: + 0A +1 ≤ 1

, 

 ∑
:=0

|: B: +
| A +1
W, 

≤ A0
W, 

+ 2W

W=1/C≤1/ 
≤ CA0 exp

(
−0 

2C

)
+ 2

0 
. (3.50)

In the second case, we have  > C/0. For all : ≥ :0 we have W: = 2/0 (^+:−:0),
|: = (^ + : − :0)2, and
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1|: B:
(3.49)
≤ |: (1 − 0W: )A:

W:
− |:A:+1

W:
+ 2W:|:

= 0(^ + : − :0) (^ + : − :0 − 2)A: − 0(^ + : − :0)2A:+1 +
2

0

≤ 0(^ + : − :0 − 1)2A: − 0(^ + : − :0)2A:+1 +
2

0
,

where in the last step we use (^ + : − :0) (^ + : − :0 − 2) = (^ + : − :0 − 1)2 − 1 ≤
(^ + : − :0 − 1)2. Summing up the obtained inequality from : = :0 to : =  , we
obtain a telescoping sum and after small rearrangements we derive

1

, 

 ∑
:=:0

|: B: +
0(^ +  − :0)2A2

 +1
, 

≤
0^2A:0

, 
+ 2( + 1 − :0)

0, 
.

Next, we provide lower and upper bounds for, :

, =

 ∑
:=0

|: =

 ∑
:=:0

|: =

 ∑
:=:0

(^ + : − :0) =
(2^ +  − :0) ( − :0 + 1)

2

≥ ( − :0) ( − :0 + 1)
2

≥ ( − :0)2
2

,

, =
(2^ +  − :0) ( − :0 + 1)

2
≤ 2(^ +  − :0) ( − :0 + 1)

2
≤ (^ +  − :0)2,

where in the last step we use C ≥ 0. Using these relations and |: = 0 for : ≤  0, we
obtain

1

, 

 ∑
:=0

|: B: + 0A +1 ≤
1

, 

 ∑
:=:0

|: B: +
0(^ +  − :0)2A2

 +1
, 

≤
0^2A:0

, 
+ 2( + 1 − :0)

0, 

≤
20^2A:0

( − :0)2
+ 22
0( − :0)

≤
320^2A:0

 2 + 82
0 

, (3.51)

where in the last step we use :0 = d /2e ≤ ( +1)/2 and  − 1 ≥  /2. To estimate A:0

we unroll the recurrence (3.49):

A:0 ≤ (1 − 0W: )A: − 1W: B: + 2W2
:

W:=W

≤ (1 − 0W):0A0 + 2W2
:0∑
:=0
(1 − 0W):

≤ A0 exp
(
−0
C
:0

)
+ 2

0C

:0≥ /2
≤ A0 exp

(
−0 

2C

)
+ 2

0C
. (3.52)
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Plugging (3.52) in (3.51) and applying  ≥ C/0, we get

1

, 

 ∑
:=0

|: B: + 0A +1 ≤
320^2A0 exp

(
− 0 2C

)
 2 + 322^2

C 2 +
82
0 

= 1280A0 exp
(
−0 

2C

)
+ 722
0 

.

Combining the above upper bound with (3.50) we get the result. �

Using the above lemma, we derive several general results allowing to transform
the upper bounds from Theorems 3.5 and 3.6 to the convergence rates.

Corollary 3.2 Let the assumptions of Theorem 3.5 hold and �1 + "�2 ≠ 0. Then,
for any  ≥ 2 one can choose {W: }:≥0 as follows:

if  ≤ C

`
, W: =

1
C
,

if  >
C

`
and : < :0, W: =

1
C
,

if  >
C

`
and : ≥ :0, W: =

2
`(^ + : − :0)

,

where :0 = d /2e, ^ = 2C/`, and

C = max
{

2`
d
, � + 2��

d

}
. (3.53)

For this choice of W: the iterates produced by SGD satisfy

E
[
‖G +1 − G∗‖2

]
≤ 128Ω2

0 exp
(
−min

{
d

4
,

`

2� + 4��/d

}
 

)
+ 72(�1 + 2��2/d)

`2 
,

where Ω2
0 = ‖G

0 − G∗‖2 + E[f2
0 ]2�/dC2.

Proof In the proof of Theorem 3.5, we derived (3.43) stating that for all : ≥ 0 and
any stepsize

0 < W ≤ min
{

1
`
,

1
� + �"

}
we have

E[+:+1] ≤
(
1 −min

{
W`, d − �

"

})
E[+: ] + W2 (�1 + "�2),

where+: = ‖G: −G∗‖2+"W2f2
:
and " > �/d. To derive this inequality, we consider

one iteration of SGD with constant stepsize W: = W. However, the same inequality
holds for SGD with non-constant stepsizes, if W: satisfies
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0 < W: ≤ min
{

1
`
,

1
� + �"

}
for all : ≥ 0. Since our choice of W: satisfies this condition for " = 2�/d, we have

E[+:+1] ≤
(
1 −min

{
W:`, d −

�

"

})
E[+: ] + W2

: (�1 + "�2)

= (1 − W:`) E[+: ] + W2
: (�1 + 2��2/d), (3.54)

where in the second step we apply

W:` ≤
d

2
= d − �

"
.

Inequality (3.54) implies (3.49) from Lemma 3.5 with A: = E[+: ], 0 = `, 1 = 0,
B: ≡ 0, 2 = �1 + 2��2/d, and C defined in (3.53). Plugging these parameters in
Lemma 3.5 and using +: ≥ ‖G: − G∗‖2, we get the result. �

Corollary 3.3 Let the assumptions of Theorem 3.5 hold and �1 +"�2 = 0. Let the
stepsize W: be

W: = W = min
{

1
`
,

1
� + 2��/d

}
and " = 2�/d. For this choice of W: and for any  ≥ 0 the iterates produced by
SGD satisfy

E
[
‖G − G∗‖2

]
≤ Ω2

0 exp
(
−min

{
`

� + 2��/d ,
d

2

}
 

)
,

where Ω2
0 = ‖G

0 − G∗‖2 + E[f2
0 ]2�W

2/d.

Proof Since �1 + "�2 = 0, " = 2�/d, Theorem 3.5 implies for any  ≥ 0 that

E [+ ] ≤
(
1 −min

{
W`,

d

2

}) 
E[+0],

where + = ‖G − G∗‖2 + "W2f2
 
. Taking into account that + ≥ ‖G − G∗‖2 and

(1 − 0)C ≤ exp(−0C) for any 0 ∈ (0, 1), we derive

E
[
‖G − G∗‖2

]
≤ E[+0] exp

(
−min

{
W`,

d

2

}
 

)
= Ω2

0 exp
(
−min

{
`

� + 2��/d ,
d

2

}
 

)
,

which concludes the proof. �

Corollary 3.4 Let the assumptions of Theorem 3.6 hold, ` > 0, and �1 +"�2 ≠ 0.
hen, for any  ≥ 2 one can choose {W: }:≥0 and sequence {|: }:≥0 as follows:
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if  ≤ C

`
, W: =

1
C
, |: =

(
1 − `

C

)−(:+1)
,

if  >
C

`
and : < :0, W: =

1
C
, |: = 0,

if  >
C

`
and : ≥ :0, W: =

2
` (^+:−:0) , |: = ^ + : − :0,

where :0 = d /2e, ^ = 2C/`, and

C = max
{

2`
d
, 2� + 4��

d

}
. (3.55)

For this choice of W: the iterates produced by SGD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ 128CΩ2

0 exp
(
−min

{
d

4
,

`

4� + 8��/d

}
 

)
+ 72(�1 + 2��2/d)

` 
,

where G = 1
, 

∑ 
:=0 |:G

: and Ω2
0 = ‖G

0 − G∗‖2 + E[f2
0 ]2�/dC2.

Proof In the proof of Theorem 3.6, we derived (3.48) stating that for all : ≥ 0 and
any stepsize

0 < W ≤ min
{

1
`
,

1
2(� + �")

}
we have

E[+:+1] ≤ (1 − [) E[+: ] − WE
[
5 (G: ) − 5 (G∗)

]
+ W2 (�1 + "�2),

where+: = ‖G:−G∗‖2+"W2f2
:
, [ = min{W`, d−�/"}, and" > �/d. To derive this

inequality, we consider one iteration of SGDwith constant stepsize W: = W. However,
the same inequality holds for SGD with non-constant stepsizes, if W: satisfies

0 < W: ≤ min
{

1
`
,

1
2(� + �")

}
for all : ≥ 0. Since our choice of W: satisfies this condition for " = 2�/d, we have

E[+:+1] ≤ (1 − [) E[+: ] − W:E
[
5 (G: ) − 5 (G∗)

]
+ W2

: (�1 + "�2)
= (1 − W:`) E[+: ] − W:E

[
5 (G: ) − 5 (G∗)

]
+W2

: (�1 + 2��2/d), (3.56)

where in the second step we apply

W:` ≤
d

2
= d − �

"
.

Inequality (3.56) implies (3.49) from Lemma 3.5 with A: = E[+: ], 0 = `, 1 = 1,
B: = E[ 5 (G: ) − 5 (G∗)], 2 = �1 + 2��2/d, and C defined in (3.55). Plugging these
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parameters in Lemma 3.5 and using +: ≥ 0 and Jensen’s inequality for the function
5 , i.e., using

5 (G ) ≤ 1
, 

 ∑
:=0

|: 5 (G: )

for G = 1
, 

∑ 
:=0 |: , we get the result. �

Corollary 3.5 Let the assumptions of Theorem 3.6 hold, ` > 0, and �1 +"�2 = 0.
Let the stepsize W: be

W: = W = min
{

1
`
,

1
2� + 4��/d

}
and " = 2�/d. For this choice of W: and for any  ≥ 0 the iterates produced by
SGD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ Ω2

0 exp
(
−min

{
`

2� + 4��/d ,
d

2

}
 

)
,

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1 − [)−(:+1) , [ = min{d/2, W`},, =
∑ 
:=0 |: ,

and Ω2
0 =

‖G0−G∗ ‖2/W + E[f2
0 ]2�W/d.

Proof Since �1 + "�2 = 0, " = 2�/d, Theorem 3.6 implies for any  ≥ 0 that

E
[
5 (G ) − 5 (G∗)

]
≤

(
1 −min

{
W`,

d

2

}) E[+0]
W

,

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1 − [)−(:+1) , [ = min{d/2, W`},, =
∑ 
:=0 |: ,

and+ = ‖G −G∗‖2+"W2f2
 
. Taking into account that, ≥ |: = (1−[)−( +1) ≥

exp([( + 1)) ≥ exp([ ), we derive

E
[
5 (G ) − 5 (G∗)

]
≤ E[+0]

W
exp (−[ )

= Ω2
0 exp

(
−min

{
`

2� + 4��/d ,
d

2

}
 

)
,

which concludes the proof. �

Corollary 3.6 Let the assumptions of Theorem 3.6 hold and ` = 0. Let  ≥ 1 and
the stepsize W: be

W: = W = min

{
1

2� + 4��/d ,
√

‖G0 − G∗‖2
(�1 + 2��2/d) + E[f2

0 ]2�/d

}
and " = 2�/d. For this choice of W: the iterates produced by SGD satisfy
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E
[
5 (G ) − 5 (G∗)

]
≤
(2� + 4��/d)'2

0
 

+
2'0

√
2�E[f2

0 ]
√
d 

+

√
4(�1 + 2��2/d)'2

0
 

,

where G = 1
 +1

∑ 
:=0 G

: and '0 = ‖G0 − G∗‖.

Proof Since ` = 0, +0 = '
2
0 + "W

2f2
0 , and " = 2�/d, Theorem 3.6 implies

E
[
5 (G ) − 5 (G∗)

]
≤ E[+0]
W( + 1) + W(�1 + "�2)

≤
'2

0
W 
+

2�WE[f2
0 ]

d 
+ W(�1 + 2��2/d). (3.57)

It remains to estimate each term in the right-hand side of the above inequality. Using
the choice of W, we get

'2
0

W 
= max


(2� + 4��/d)'2

0
 

,
'0

√
(�1 + 2��2/d) + E[f2

0 ]2�/d
 


≤
(2� + 4��/d)'2

0
 

+
'0

√
(�1 + 2��2/d) + E[f2

0 ]2�/d
 

≤
(2� + 4��/d)'2

0
 

+
'0

√
�1 + 2��2/d
√
 

+
'0

√
2�E[f2

0 ]
√
d 

,

2�WE[f2
0 ]

d 
≤

2�E[f2
0 ]

d 

√
‖G0 − G∗‖2

(�1 + 2��2/d) + E[f2
0 ]2�/d

≤
'0

√
2�E[f2

0 ]
√
d 

,

and

W(�1 + 2��2/d) ≤ (�1 + 2��2/d)
√

‖G0 − G∗‖2
(�1 + 2��2/d) + E[f2

0 ]2�/d

≤
'0

√
�1 + 2��2/d
√
 

.

Plugging the above estimates in (3.57), we get the result. �

In the next few subsections, we will actively use Corollaries 3.2-3.6 to derive the
convergence rates of SGD-like methods under different assumptions.



3.1 Stochastic Gradient Descent 99

3.1.4.2 SGD Under the Bounded Variance Assumption

Consider the case when 5 is convex, !-smooth, and Assumption 3.1 holds. As we
show earlier in this section (see (3.37)), Assumption 3.3 holds in this case with the
following parameters:

� = !, � = 0, � = 0, �1 = f
2, d = 1, f2

: ≡ 0, �2 = 0.

We also highlight that in the case of ℎ(G) = 0, one can derive the same fact without
assuming the convexity of 5 . Plugging these parameters in Theorems 3.5, 3.6 and
Corollaries 3.2, 3.4, 3.6 we obtain several convergence results summarized in the
following theorems.

Theorem 3.7 Let the objective function 5 be convex, (`, G∗)-quasi strongly convex
with ` > 0, !-smooth, and Assumption 3.1 hold. Assume that the stepsize W: = W
satisfies

0 < W ≤ 1
!
. (3.58)

Then, for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): '2

0 +
Wf2

`
, (3.59)

where '0 = ‖G0 − G∗‖. Moreover, for any  ≥ 2 one can choose {W: }:≥0 as follows:

if  ≤ !

`
, W: =

1
!
,

if  >
!

`
and : < :0, W: =

1
!
,

if  >
!

`
and : ≥ :0, W: =

2
2! + `(: − :0)

,

where :0 = d /2e. For this choice of W: the iterates produced by SGD satisfy

E
[
‖G +1 − G∗‖2

]
≤ 128'2

0 exp
(
− `

2!
 

)
+ 72f2

`2 
. (3.60)

Proof The result follows from Theorem 3.5 and Corollary 3.2. �

In contrast to (3.59), upper bound (3.60) decreaseswith the growth of . It consists
of two terms: exponentially decaying one and O(1/ ) term. For large enough  the
second term dominates the first one and the method converges relatively slow in this
case. In contrast when f2 is sufficiently small, e.g., reduced via mini-batching, the
first term can dominate the second one for quite large range of  , thus, the method
converges linearly during the quite long initial stage.

In the next theorem, we provide the results in term of the functional values.
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Theorem 3.8 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` ≥ 0, !-smooth, ℎ(G) ≡ 0, and Assumption 3.1 hold. Assume that the stepsize
W: = W satisfies

0 < W ≤ 1
2!
.

Then, for each : ≥ 0 the iterations of the method from (3.34) satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ (1 − W`) +1

'2
0
W
+ Wf2, when ` > 0, (3.61)

E
[
5 (G ) − 5 (G∗)

]
≤

'2
0

W( + 1) + Wf
2, when ` = 0, (3.62)

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1− W`)−(:+1) ,, =
∑ 
:=0 |: , '0 = ‖G0 − G∗‖2.

In particular, if ` > 0, then for any  ≥ 2 one can choose {W: }:≥0 and sequence
{|: }:≥0 as follows:

if  ≤ 2!
`
, W: =

1
2! , |: =

(
1 − `

2!

)−(:+1)
,

if  >
2!
`

and : < :0, W: =
1

2! , |: = 0,

if  >
2!
`

and : ≥ :0, W: =
2

4!+` (:−:0) , |: =
4!
`
+ : − :0,

where :0 = d /2e. For this choice of W: the iterates produced by SGD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ 256!'2

0 exp
(
− `

8!
 

)
+ 72f2

` 
, (3.63)

where G = 1
, 

∑ 
:=0 |:G

: . Finally, if ` = 0, then for any  ≥ 1 the iterates
produced by SGD with stepsize

W: = W = min


1
4!
,

√
'2

0
f2 


satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

4!'2
0

 
+ 2f'0√

 
, (3.64)

where G = 1
 +1

∑ 
:=0 G

: .

Proof The result follows from Theorem 3.6 and Corollaries 3.4, 3.6. �

When ` > 0, the above theorem establishes (3.63), which is very similar to (3.60).
We also point out that neither (3.63) follows from (3.60) nor (3.60) follows from
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(3.63). Indeed, let (3.60) holds and ℎ(G) ≡ 0. Then from !-smoothness we get

E
[
5 (G +1) − 5 (G∗)

]
≤ 64!'2

0 exp
(
− `

2!
 

)
+ 36!f2

`2 
,

which has an extra O(!/`) factor in front to the second term if compared to (3.63).
Let us now assume that (3.63) holds and 5 is `-strongly convex in addition. Then,
from the strong convexity we get

E
[
5 (G ) − 5 (G∗)

]
≤ 512

!

`
'2

0 exp
(
− `

8!
 

)
+ 144f2

`2 
,

which has an extra O(!/`) factor in front to the first term if compared to (3.60).
Therefore, the bounds (3.60) and (3.63) complement each other.

When ` = 0, the above theorem gives bound (3.64), which has two terms. The
first term decreases as O(1/ ), which corresponds to the convergence of gradient
descent for convex smooth functions. The second term is due to the stochasticity of
updates and it decreases much slower.

3.1.4.3 SGD and Arbitrary Sampling

As we already shown earlier (see (3.38)), when 5 is convex and Assumption 3.2
holds Assumption 3.3 is satisfied with the following parameters:

� = 2!max, � = 0, � = 0, �1 = 2f2
∗ , d = 1, f2

: ≡ 0, �2 = 0. (3.65)

Let us remind here that !max is the worst smoothness constant of the stochastic
realization 5b (G). This constant can be much larger than the smoothness constant
of 5 , e.g., in the finite-sum case, it can be < times larger. Since the rates from
Corollaries 3.2-3.6 becomes worse when � increases, the question of reducing � is
important. To address this question we consider a modification of Assumption 3.2.

Assumption 3.4 (Expected Smoothness) Stochastic gradient 6: is computed as
6: = ∇ 5b : (G: ), where b: is sampled from some distributionD independently from
previous iterations. Moreover, there exists a positive constant L > 0 such that for all
G ∈ R= and G∗ being the solution of (3.30) the following inequality holds:

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
≤ 2L+ 5 (G, G∗). (3.66)

As we will see further, this assumption can replace Assumption 3.2 to achieve
similar convergence guarantees as in Theorem 3.2, i.e., Assumption 3.4 is a weaker
version of Assumption 3.2 allowing to achieve similar results. To illustrate the
generality of the introduced assumption, we consider finite-sum case, i.e., we focus
on problem (3.30) with

5 (G) = 1
<

<∑
8=1

58 (G).
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Classical approach to sample stochastic gradients in this case is a uniform sam-
pling, i.e., 6: = ∇ 5b : (G: ), where b: is sampled from the uniform distribution on
{1, . . . , <} independently from previous steps. There exist other sampling strategies
that we can describe as follows. Let b = (b1, . . . , b<)> ∈ R< be <-dimensional
random vector with distribution D such that

Eb∼D [b8] = 1 for all 8 ∈ {1, . . . , <}. (3.67)

Next, for any b ∼ D we consider function

5b (G) =
1
<

<∑
8=1

b8 58 (G). (3.68)

Since E[b8] = 1, we have Eb∼D [ 5b (G)] = 5 (G) and Eb∼D [∇ 5b (G)] = ∇ 5 (G). Such
a stochastic reformulation of the initial problem is convenient for dealing with a
broad class of samplings of stochastic gradients. Indeed, 6: = ∇ 5b : (G: ) can be seen
as a stochastic gradient and the sampling strategy is determined by distribution D
of sampling vector b. Below we provide several examples of samplings that fit the
described framework. We start with the standard uniform sampling.

Uniform Sampling

Let P{b = < · 48} = 1/<, where 48 is the 8-th basis vector in R<, 8 ∈ {1, . . . , <}, i.e.,
8-th component of 48 equals 1 and all remaining components of 48 equal 0. Then,
E[b8] = < · (1/<) + 0 · (1 − 1/<) = 1 for all 8 ∈ {1, . . . , <} and ∇ 5b (G) = ∇ 5 9 (G),
where 9 is the random integer uniformly distributed on {1, . . . , <}.

Next, assume that 58 is convex and !8-smooth for all 8 ∈ {1, . . . , <}. Then,

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
=

1
<

<∑
8=1
‖∇ 58 (G) − ∇ 58 (G∗)‖2

(B.10)
≤ 1

<

<∑
8=1

2!8+ 58 (G, G∗)

≤ 2!max ·
1
<

<∑
8=1
+ 58 (G, G∗) = 2!max+ 5 (G, G∗),

where !max = max8∈[<] !8 . That is, Assumption 3.4 holds with L = LUS
def
= !max.

As expected, L equals the worst smoothness constant !max in the case of uniform
sampling. When smoothness constants !1, . . . , !< are known or can be estimated
in advance as in logistic/linear regression, it is possible to improve L.

Importance Sampling
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Let P{b = (<!/!8) · 48} = !8/(<!) for all 8 ∈ {1, . . . , <}, where ! = 1
<

∑<
8=1 !8 .

Then, for all 8 ∈ {1, . . . , <}

E[b8] =
<!

!8
· !8
<!
+ 0 ·

(
1 − !8

<!

)
= 1, ∇ 5b (G) =

!

! 9
∇ 5 9 (G),

where 9 is the random integer such that P{ 9 = 8} = !8/(<!) for all 8 ∈ {1, . . . , <}.
Next, assume that 58 is convex and !8-smooth for all 8 ∈ {1, . . . , <}. Then,

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
=

<∑
8=1

!8

<!

 !!8 ∇ 58 (G) − !

!8
∇ 58 (G∗)

2

=
1
<

<∑
8=1

!

!8
‖∇ 58 (G) − ∇ 58 (G∗)‖2

(B.10)
≤ 1

<

<∑
8=1

!

!8
· 2!8+ 58 (G, G∗)

= 2! · 1
<

<∑
8=1
+ 58 (G, G∗) = 2!+ 5 (G, G∗).

That is, Assumption 3.4 holds with L = LIS
def
= !.

We notice that ! ≤ !max and in some cases these smoothness constants can be
significantly different. As we will see further, in such cases, SGD with importance
sampling can significantly outperform standard SGD with uniform sampling.

However, in the worst case, both constants are < times larger than ! – the
smoothness constant of 5 . Indeed, consider the following function of < arguments:

5 (G) = 1
<
‖G‖22 =

1
<

<∑
8=1

G2
8︸︷︷︸

58 (G)

. (3.69)

Clearly, 5 (G) is !-smoothwith ! = 1/<, while for all 8 ∈ [<] function 58 is !8-smooth
with !8 = 1. Therefore, ! = !max = 1 = <!.

To some extent, one can handle this issue via mini-batching. Fortunately, mini-
batching strategies also fit the formalism with sampling vectors b.

Sampling with Replacement

Let b (1), b (2), . . . , b (A) be i.i.d. samples from some distributionD satisfying (3.67).
Then, distribution DA of random vector

b =
1
A

A∑
8=1

b (8)



104 3 Convex Stochastic Optimization: Smooth Case

also satisfies (3.67).
Next, assume that 5 is convex and !-smooth and Assumption 3.4 holds for

distribution D with constant L = LD . To simplify the following derivation we
introduce new notations: Δ(G, G∗) = ∇ 5 (G) −∇ 5 (G∗) and Δb (8) (G, G∗) = ∇ 5b (8) (G) −
∇ 5b (8) (G∗), 8 ∈ [A]. Then, due to variance decomposition and independence of
b (1), b (2), . . . , b (A) we have

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
= Eb


1
A

A∑
8=1
Δb (8) (G, G∗)

2
= ‖Δ(G, G∗)‖2 + Eb


1
A

A∑
8=1

(
Δb (8) (G, G∗) − Δ(G, G∗)

)2
= ‖Δ(G, G∗)‖2 + 1

A2

A∑
8=1
Eb (8)

[
‖Δb (8) (G, G∗) − Δ(G, G∗)‖2

]
= ‖Δ(G, G∗)‖2 + 1

A
Eb (1)

[
‖Δb (1) (G, G∗) − Δ(G, G∗)‖2

]
=

(
1 − 1

A

)
‖Δ(G, G∗)‖2 + 1

A
Eb (1)

[
‖Δb (1) (G, G∗)‖2

]
(B.10)
≤ 2

((
1 − 1

A

)
! + LD

A

)
+ 5 (G, G∗).

That is, Assumption 3.4 holds with L = LD,A
def
=

(
1 − 1

A

)
! + LD

A
. In particular,

consider the situation when 58 are convex and !8-smooth for 8 ∈ [<]. Then, for
mini-batching with replacement using uniform sampling Assumption 3.4 holds with
L = LUS,A

def
=

(
1 − 1

A

)
! + !max

A
and for mini-batching with replacement using

importance sampling Assumption 3.4 holds with L = LIS,A
def
=

(
1 − 1

A

)
! + !

A
,

where !max = max8∈[<] !8 and ! = 1
<

∑<
8=1 !8 .

The above mini-batching strategy is classical. Next, we consider also two other
approaches that form mini-batches without replacement.

Independent Sampling Without Replacement

Let random vector b ∈ R< be such that

b8 =

{
1
?8
, with probability ?8 > 0,

0, with probability 1 − ?8 ,
8 ∈ [<]

and b1, . . . , b< are independent. In other words, each summand is taken in the mini-
batch with probability ?8 independently from other summands. By definition we
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have E[b8] = (1/?8) · ?8 + 0 · (1 − ?8) = 1, so, (3.67) holds. The number of sampled
summands is a random variable having the expectation equal A def

=
∑<
8=1 ?8 .

Next, assume that 58 is convex and !8-smooth for all 8 ∈ {1, . . . , <}, 5 is !-
smooth. To simplify the following derivation we introduce new notations: Δ(G, G∗) =
∇ 5 (G) − ∇ 5 (G∗), Δ8 (G, G∗) = ∇ 58 (G) − ∇ 58 (G∗), 8 ∈ [<]. Then, due to variance
decomposition and independence of b1, b2, . . . , bA we have

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
= ‖Δ 5 (G, G∗)‖2 + Eb


 1
<

<∑
8=1
(b8 − 1)Δ8 (G, G∗)

2
= ‖Δ 5 (G, G∗)‖2 +

1
<2

<∑
8=1
Eb [(b8 − 1)2] ‖Δ8 (G, G∗)‖2

(B.10)
≤ 2!+ 5 (G, G∗)

+ 1
<2

<∑
8=1

(
(1 − ?8)2

?8
+ 1 − ?8

)
‖Δ8 (G, G∗)‖2

(B.10)
≤ 2!+ 5 (G, G∗)

+ 1
<2

<∑
8=1

2!8 (1 − ?8)
?8

+ 58 (G, G∗)

≤ 2
(
! + max

8∈[<]

!8 (1 − ?8)
<?8

)
+ 5 (G, G∗)

That is, Assumption 3.4 holds with L = L{?8 }8∈[<]
def
= ! + max8∈[<] !8 (1−?8)<?8

.
In particular, for independent uniform sampling with replacement with averaged
batchsize 1 ≤ A ≤ < we have ?8 = A/< and Assumption 3.4 holds with L =

! + !max (<−A )
A<

, where !max = max8∈[<] !8 . We notice that L in this case is better
than L for the mini-batching with replacement.

The above approach has a random batchsize, which can be problematic in some
applications. As an alternative, one can use another without replacement sampling
with constant batchsize.

A-Nice Sampling

Let A be an integer from [1, <] and randomvector b ∈ R< have a uniformdistribution
on the set of <-dimensional vectors from {0, </A}< having A non-zero components.
In other words, the set of indices chosen in the mini-batch is a random set from
the uniform distribution on all A-element subsets of [<]. By definition we have
E[b8] = <

A
· A
<
+ 0 · (1 − A

<
) = 1, so, (3.67) holds.

Next, assume that 58 is convex and !8-smooth for all 8 ∈ {1, . . . , <}, 5 is !-
smooth. To simplify the following derivation we introduce new notations: Δ(G, G∗) =
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∇ 5 (G) − ∇ 5 (G∗), Δ8 (G, G∗) = ∇ 58 (G) − ∇ 58 (G∗), 8 ∈ [<]. Then,

Eb
[
‖∇ 5b (G) − ∇ 5b (G∗)‖2

]
=

1(<
A

) ∑
(⊆[<], |( |=A

1
A

∑
8∈(
(∇ 58 (G) − ∇ 58 (G∗))

2

=
1

A2 (<
A

) ∑
(⊆[<], |( |=A

∑
8∈(
‖Δ8 (G, G∗)‖2

+ 2
A2 (<

A

) ∑
(⊆[<], |( |=A

∑
8, 9∈(,8< 9

〈Δ8 (G, G∗),Δ 9 (G, G∗)〉

=
1
A<

<∑
8=1
‖Δ8 (G, G∗)‖2

+ 2(A − 1)
A<(< − 1)

∑
1≤8< 9≤<

〈Δ8 (G, G∗),Δ 9 (G, G∗)〉

=
1
A<

<∑
8=1
‖Δ8 (G, G∗)‖2

+ A − 1
A (< − 1)

<∑
8=1

〈
Δ8 (G, G∗),

1
<

∑
9≠8, 9∈[<]

Δ 9 (G, G∗)
〉

=
1
A<

<∑
8=1
‖Δ8 (G, G∗)‖2 −

A − 1
A<(< − 1)

<∑
8=1
‖Δ8 (G, G∗)‖2

+ A − 1
A (< − 1)

<∑
8=1
〈Δ8 (G, G∗),Δ(G, G∗)〉

=
< − A

A<(< − 1)

<∑
8=1
‖Δ8 (G, G∗)‖2 +

<(A − 1)
A (< − 1) ‖Δ(G, G

∗)‖2

(B.10)
≤ 2(< − A)

A<(< − 1)

<∑
8=1

!8+ 58 (G, G∗) +
2!<(A − 1)
A (< − 1) + 5 (G, G

∗)

≤ 2
(
<(A − 1)
A (< − 1) ! +

< − A
A<(< − 1) !max

)
+ 5 (G, G∗),

where !max = max8∈[<] !8 . That is, Assumption 3.4 holds with L = LA -nice
def
=

<(A−1)
A (<−1) ! +

<−A
A<(<−1) !max. We notice that LA -nice is smaller than LUS,A .

For more examples we refer to [?]. Overall, these examples illustrate the general-
ity of the approach described above. Next, we show that this approach fits Assump-
tion 3.3.

Lemma 3.6 Let Assumption 3.4 hold. Then, the iterates of SGD with 6: = ∇ 5b : (G: )
satisfy
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E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 4L+ 5 (G: , G∗) + 2f2

∗ ,

where f2
∗ = Eb

[
‖∇ 5b (G∗) − ∇ 5 (G∗)‖2

]
.

Proof Using Young’s inequality ‖0 + 1‖2 ≤ 2‖0‖2 + 2‖1‖2, ∀0, 1 ∈ R=, we derive

E:
[
‖6: − ∇ 5 (G∗)‖2

]
= Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗) + ∇ 5b : (G∗) − ∇ 5 (G∗)‖2

]
≤ 2Eb :

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗)‖2

]
+2Eb :

[
‖∇ 5b : (G∗) − ∇ 5 (G∗)‖2

]︸                                 ︷︷                                 ︸
f2
∗

(3.66)
≤ 4L+ 5 (G: , G∗) + 2f2

∗ ,

which concludes the proof. �

The above lemma proves that Assumption 3.4 implies that Assumption 3.3 holds
with the following parameters:

� = 2L, � = 0, � = 0, �1 = 2f2
∗

def
= 2Eb

[
‖∇ 5b (G∗) − ∇ 5 (G∗)‖2

]
,

d = 1, f2
: ≡ 0, �2 = 0. (3.70)

We notice that in the special case of uniform sampling the above parameters coincide
with the ones from (3.65). Plugging the parameters from (3.70) in Theorems 3.5,
3.6 and Corollaries 3.2, 3.4, 3.6 we obtain several convergence results summarized
in the following theorems.

Theorem 3.9 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` > 0, and Assumption 3.4 hold. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
2L . (3.71)

Then, for each : ≥ 0 the iterations of SGD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): '2

0 +
2Wf2

∗
`

, (3.72)

where '0 = ‖G0 − G∗‖ and f2
∗ = Eb

[
‖∇ 5b (G∗) − ∇ 5 (G∗)‖2

]
. Moreover, for any

 ≥ 2 one can choose {W: }:≥0 as follows:

if  ≤ 2L
`
, W: =

1
2L ,

if  >
2L
`

and : < :0, W: =
1

2L ,

if  >
2L
`

and : ≥ :0, W: =
2

4L + `(: − :0)
,
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where :0 = d /2e. For this choice of W: the iterates produced by SGD satisfy

E
[
‖G +1 − G∗‖2

]
≤ 128'2

0 exp
(
− `

4L 
)
+ 144f2

∗
`2 

. (3.73)

Proof The result follows from Theorem 3.5 and Corollary 3.2. �

The result above is almost identical to Theorem 3.7. Neglecting numerical con-
stants, the key difference is that instead of smoothness constant ! of 5 and the
uniform upper bound for the variance f2 the above result depends on the expected
smoothness constant L and the variance at the solution f2

∗ . First, f2
∗ can be much

smaller than f2 and f2
∗ is finite whenever the variance of the stochastic gradient

exists at each G ∈ R3 , e.g., for the finite-sum problems. In contrast, f2 can be infinite
even for simple problems like linear regression.

However, ! ≤ L and the difference can be significant even for importance
sampling (see the discussion of the example from (3.69)). This aspect affects the
exponentially decaying term in the convergence rate. That is, via relaxing the as-
sumption on the variance (and improving O(1/ ) term), we make the exponentially
decaying term worse when we replace Assumption 3.1 with Assumption 3.4.

Next, we compare the rates for SGD with uniform and importance samplings. In
the case of the uniform sampling, the bound from (3.73) is

E
[
‖G +1 − G∗‖2

]
≤ 128'2

0 exp
(
− `

4!max
 

)
+

144f2
US,∗

`2 
, (3.74)

where fUS,∗ = 1
<

∑<
8=1 ‖∇ 58 (G∗) − ∇ 5 (G∗)‖2, and in the case of the importance

sampling we have

E
[
‖G +1 − G∗‖2

]
≤ 128'2

0 exp
(
− `

4!
 

)
+

144f2
IS,∗

`2 
, (3.75)

where fIS,∗ = 1
<

∑<
8=1

!
!8
‖∇ 58 (G∗) − ∇ 5 (G∗)‖2. Since ! ≤ !max, importance sam-

pling improves the exponentially decaying term. Regarding the variance term, one
cannot compare them directly. However, assuming ‖∇ 58 (G∗) − ∇ 5 (G∗)‖ ∼ !8 for all
8 ∈ [<], we get that f2

US,∗ ∼
1
<

∑<
8=1 !

2
8

def
= !2 and f2

IS,∗ ∼
1
<
!!8 = (!)2, which

can be much smaller than !2. For example, when ∇ 5 (G∗) = 0, it is natural to expect
that the norm of the gradient at G∗ is larger for those summands that have larger
smoothness constant. Therefore, in such cases, SGD with importance sampling is
strictly better than SGD with uniform sampling.

Regarding the comparison of mini-batching strategies, we consider uniform sam-
pling with replacement and A-nice sampling without replacement. As we already
observed before, LA -nice ≤ LUS,A . Moreover, one can verify that for the uniform

sampling with replacement f2
∗ = f

2
US,A ,∗

def
=

f2
US,∗
A

and for A-nice sampling without

replacement f2
∗ = f

2
A -nice,∗

def
=
(<−A )f2

US,∗
A (<−1) , which is smaller than f2

US,A ,∗. Therefore,
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A-nice sampling without replacement is provably better than the standard uniform
sampling with replacement.

In the next theorem, we provide the results in term of the functional values.

Theorem 3.10 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` ≥ 0, !-smooth, ℎ(G) ≡ 0, and Assumption 3.4 hold. Assume that the stepsize
W: = W satisfies

0 < W ≤ 1
4L .

Then, for each : ≥ 0 the iterations of the method from (3.34) satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ (1 − W`) +1

'2
0
W
+ 2Wf2

∗ , when ` > 0, (3.76)

E
[
5 (G ) − 5 (G∗)

]
≤

'2
0

W( + 1) + 2Wf2
∗ , when ` = 0, (3.77)

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1− W`)−(:+1) ,, =
∑ 
:=0 |: , '0 = ‖G0 − G∗‖2,

f2
∗ = Eb

[
‖∇ 5b (G∗) − ∇ 5 (G∗)‖2

]
. In particular, if ` > 0, then for any  ≥ 2 one

can choose {W: }:≥0 and sequence {|: }:≥0 as follows:

if  ≤ 4L
`
, W: =

1
4L , |: =

(
1 − `

4L

)−(:+1)
,

if  >
4L
`

and : < :0, W: =
1

4L , |: = 0,

if  >
4L
`

and : ≥ :0, W: =
2

8L+` (:−:0) , |: =
8L
`
+ : − :0,

where :0 = d /2e. For this choice of W: the iterates produced by SGD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ 512L'2

0 exp
(
− `

16L 
)
+ 144f2

∗
` 

, (3.78)

where G = 1
, 

∑ 
:=0 |:G

: . Finally, if ` = 0, then for any  ≥ 1 the iterates
produced by SGD with stepsize

W: = W = min


1
8L ,

√
'2

0

f2
∗ 


satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

8L'2
0

 
+ 2f∗'0√

 
, (3.79)

where G = 1
 +1

∑ 
:=0 G

: .
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Proof The result follows from Theorem 3.6 and Corollaries 3.4, 3.6. �

The result above is almost identical to Theorem 3.8 up to the differences discussed
after Theorem 3.9.

3.1.4.4 SGD with Arbitrary Sampling and Variance Reduction

Shortly after formulating Assumption 3.3, we showed that L-SVRG for the finite-sum
problems with 58 being convex and !8-smooth satisfies Assumption 3.3 with the
following parameters (see (3.39) and the discussion above):

� = 2!max, � = 2, f2
: =

1
<

<∑
8=1
‖∇ 58 (|: ) − ∇ 58 (G∗)‖2, �1 = 0,

� = ?!max, d = ?, �2 = 0.

In particular, � and � are proportional to !max, which implies the convergence
guarantees that depend on !max. This happens because standard L-SVRG uses uniform
sampling. However, similarly to SGD, one can consider L-SVRG with arbitrary
sampling. That is, consider the stochastic reformulation (3.68) and the following
modification of L-SVRG:

6: = ∇ 5b : (G: ) − ∇ 5b : (|: ) + ∇ 5 (|: ), (3.80)

|:+1 =

{
G: , with probability ?,
|: , with probability 1 − ?,

G:+1 = proxW:ℎ (G
: − W:6: ),

where b: is sampled independently from the previous iterations and the randomness
in the update of |:+1 is independent from previous steps and b: .

In the next two lemmas, we formally verify that Assumption 3.3 holds in this case
as well.

Lemma 3.7 Let Assumption 3.4 hold. Then, the iterates of L-SVRG with 6: defined
in (3.80) satisfy

E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 4L+ 5 (G: , G∗) + 2f2

: ,

where f2
:
= 2L+ 5 (|: , G∗).

Proof Using Young’s inequality ‖0 + 1‖2 ≤ 2‖0‖2 + 2‖1‖2, ∀0, 1 ∈ R=, we derive
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E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 2E:

[
‖∇ 5b : (G: ) − ∇ 5b : (G∗)‖2

]
+2E:

[
‖∇ 5b : (|: ) − ∇ 5b : (G∗) − (∇ 5 (|: ) − ∇ 5 (G∗))‖2

]
(3.66)
≤ 4L+ 5 (G: , G∗) + 2E:

[
‖∇ 5b : (|: ) − ∇ 5b : (G∗)‖2

]
(3.66)
≤ 4L+ 5 (G: , G∗) + 2 · 2L+ 5 (|: , G∗)︸            ︷︷            ︸

f2
:

which concludes the proof. �

Lemma 3.8 Let Assumption 3.4 hold. Then, the iterates of L-SVRG with 6: defined
in (3.80) satisfy

E:
[
f2
:+1

]
≤ (1 − ?)f2

: + 2?L+ 5 (G: , G∗),

where f2
:
= 2L+ 5 (|: , G∗).

Proof By definition of |:+1 we have

E:
[
f2
:+1

]
= E:

[
2L+ 5 (|:+1, G∗)

]
= (1 − ?) · 2L+ 5 (|: , G∗)︸            ︷︷            ︸

f2
:

+2?L+ 5 (G: , G∗),

which concludes the proof. �

That is, Lemmas 3.7 and 3.8 imply that Assumption 3.3 holds with the following
parameters

� = 2L, � = 2, f2
: = 2L+ 5 (|: , G∗), �1 = 0,

� = ?L, d = ?, �2 = 0. (3.81)

Plugging these parameters in Theorems 3.5, 3.6 and Corollaries 3.3, 3.5, 3.6 we
obtain several convergence results summarized in the following theorems.

Theorem 3.11 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` > 0, and Assumption 3.4 hold. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
6L . (3.82)

Then, for each : ≥ 0 the iterations of L-SVRG satisfy

E
[
‖G: − G∗‖2

]
≤

(
1 −min

{
W`,

?

2

}) :
+0, (3.83)

where +0 = ‖G0 − G∗‖2 + f2
0

4W2/?. Moreover, if 5 is additionally !-smooth, then for
any  ≥ 0 and
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W =
1

6L

the iterates produced by L-SVRG satisfy

E
[
‖G +1 − G∗‖2

]
≤

(
1 + !

9?L

)
'2

0 exp
(
−min

{
`

6L ,
?

2

}
 

)
, (3.84)

where '0 = ‖G0 − G∗‖.

Proof The first part (bound (3.83)) follows from Theorem 3.5. Next, Corollary 3.3
implies that for W = 1/6L the iterates produced by L-SVRG satisfy

E
[
‖G +1 − G∗‖2

]
≤ Ω2

0 exp
(
−min

{
`

6L ,
?

2

}
 

)
,

where Ω2
0 = ‖G

0 − G∗‖2 + f2
0/9?L2. Using Assumption 3.4, we estimate E[f2

0 ] as
follows:

E[f2
0 ] = 2L+ 5 (G0, G∗) ≤ L!‖G0 − G∗‖2 = L!'2

0 . (3.85)

Plugging this upper bound in the definition of Ω2
0, we get the result. �

As expected, the above result establishes linear convergence of L-SVRG. From
(3.84) it is clear that the smaller L the better the rate. For example, consider single-
element samplings: uniform and importance samplings. In this case, we take ? = 1/<.
Then, for L-SVRG with uniform sampling we have

E
[
‖G +1 − G∗‖2

]
≤

(
1 + !

9?!max

)
'2

0 exp
(
−min

{
`

6!max
,

1
2<

}
 

)
, (3.86)

and for L-SVRG with importance sampling we have

E
[
‖G +1 − G∗‖2

]
≤

(
1 + !

9?!

)
'2

0 exp
(
−min

{
`

6!
,

1
2<

}
 

)
. (3.87)

As expected, importance sampling improves the convergence rate of the standard L-
SVRG. A similar conclusion is valid for the comparison of standard uniform sampling
with replacement and A-nice sampling.

In the next theorem, we provide the results in term of the functional values.

Theorem 3.12 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` ≥ 0, !-smooth, ℎ(G) ≡ 0, and Assumption 3.4 hold. Assume that the stepsize
W: = W satisfies

0 < W ≤ 1
12L .

Then, for each : ≥ 0 the iterations of the method from (3.34) satisfy
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E
[
5 (G ) − 5 (G∗)

]
≤

(
1 −min

{
W`,

?

2

}) +1 '2
0
W
, when ` > 0, (3.88)

E
[
5 (G ) − 5 (G∗)

]
≤

'2
0

W( + 1) , when ` = 0, (3.89)

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1 − min{W`, ?/2})−(:+1) ,, =
∑ 
:=0 |: , '0 =

‖G0 − G∗‖2. In particular, if ` > 0, then for any  ≥ 0 and

W =
1

12L

the iterates produced by L-SVRG satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ (12L + !

3?
)'2

0 exp
(
−min

{
`

12L ,
?

2

}
 

)
, (3.90)

where '0 = ‖G0 − G∗‖. Finally, if ` = 0, then for any  ≥ 1 the iterates produced by
L-SVRG with stepsize

W: = W = min


1
12L ,

√√
?'2

0

4f2
0


satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

(
12L + 4

√
L!√
?

)
'2

0

 
, (3.91)

where G = 1
 +1

∑ 
:=0 G

: .

Proof The first part (bounds (3.88) and (3.89)) follows from from Theorem 3.6.
Next, Corollary 3.5 implies

E
[
5 (G ) − 5 (G∗)

]
≤ Ω2

0 exp
(
−min

{
`

12L ,
?

2

}
 

)
,

whereΩ2
0 = 12L‖G0−G∗‖2 + f2

0/3?L. Using the upper bound (3.85) for f2
0 we derive

(3.90). Finally, Corollary 3.6 implies

E
[
5 (G ) − 5 (G∗)

]
≤

12L'2
0

 
+

4'0

√
f2

0
√
? 

,

Plugging the upper bound (3.85) for f2
0 we get (3.91). �

When ` > 0 the result is very similar to Theorem 3.11. Let us discuss more
the rate in the case when ` = 0. Consider single-element samplings: uniform and
importance samplings. In this case, we take ? = 1/<. Then, for L-SVRG with uniform
sampling we have
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E
[
5 (G ) − 5 (G∗)

]
≤

(
12!max + 4

√
<!max!

)
'2

0
 

,

and for L-SVRG with importance sampling we have

E
[
5 (G ) − 5 (G∗)

]
≤

(
12! + 4

√
<!!

)
'2

0

 
.

Besides the superiority of importance sampling over uniform sampling in this case,
we also notice that neglecting the differences between smoothness constants the rate
of L-SVRG in the convex case is proportional to

√
<. When ! ≈ ! or even ! ≈ !max,

L-SVRG has
√
< times better oracle complexity than GD. However, in the worst case,

! = <! and the oracle complexity of L-SVRG with importance sampling coincides
with the oracle complexity of GD. Finally, when comparing the rate of L-SVRG (see
(3.91)) with the rate of SGD (see (3.79)), we observe that the rate of SGD has better
O(1/ ) term but it also has a slower O(1/√ ) term, which is dominating when  is
sufficiently large. Therefore, when ` = 0, SGD is preferable for finding relatively
inaccurate solution in terms of the functional suboptimality, while L-SVRG is better
for finding more accurate solutions.

3.1.4.5 SGD and Coordinate-Wise Randomization

In the simplest setup, the analysis of zeroth-order/coordinate methods is very similar
to the analysis of stochastic first-order methods like SGD. Here we illustrate this
aspect on Randomized Coordinate Descent (RCD) with uniform randomization of
sampled components. Further details and examples are deferred to Chapter 5.

RCD can be seen as a special case of SGD (3.34) with 6: chosen as

6: = =〈∇ 5 (G: ), 4 9: 〉4 9: = =[∇ 5 (G: )] 9: 4 9: , (3.92)

where 4 9: is 9: -th element of the standard basis in R= and 9: is sampled uniformly
at random from [=] independently from the previous iterations. That is, at each
iteration of RCD one needs to compute just one directional derivative [∇ 5 (G: )] 9:
instead of the full gradient.

As we already noticed, despite the seeming differences betweenRCD and versions
of SGD we consider before, RCD is in fact a special case of SGD. Indeed, estimator
6: defined in (3.92) is an unbiased estimator of ∇ 5 (G: ):

E:
[
6:

]
=

∑
8=1

=[∇ 5 (G: )]848 ·
1
=
=

∑
8=1
[∇ 5 (G: )]848 = ∇ 5 (G: ).

Moreover, for convex and !-smooth 5 we have the following result.

Lemma 3.9 Let 5 be convex and !-smooth. Then, for all : ≥ 0 the iterates produced
by RCD satisfy
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E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 4=!+ 5 (G: , G∗) + 2=‖∇ 5 (G∗)‖2.

Proof Using Young’s inequality ‖0 + 1‖2 ≤ 2‖0‖2 + 2‖1‖2, ∀0, 1 ∈ R=, we derive

E:
[
‖6: − ∇ 5 (G∗)‖2

]
= E:

[
‖=[∇ 5 (G: )] 9: 4 9: ± =[∇ 5 (G∗)] 9: 4 9: − ∇ 5 (G∗)‖2

]
≤ 2=2E:

[
‖ [∇ 5 (G: )] 9: 4 9: − [∇ 5 (G∗)] 9: 4 9: ‖2

]
+2E:

[
‖=[∇ 5 (G∗)] 9: 4 9: − ∇ 5 (G∗)‖2

]
≤ 2=

=∑
8=1

(
[∇ 5 (G: )]8 − [∇ 5 (G∗)]8

)2

+2E:
[
‖=[∇ 5 (G∗)] 9: 4 9: ‖2

]
= 2=‖∇ 5 (G: ) − ∇ 5 (G∗)‖2 + 2=

=∑
8=1
[∇ 5 (G∗)]28

(B.10)
≤ 4=!+ 5 (G: , G∗) + 2=‖∇ 5 (G∗)‖2,

which concludes the proof. �

That is, the above lemma implies that Assumption 3.3 holds with the following
parameters:

� = 2=!, � = 0, f2
: ≡ 0, �1 = 2=‖∇ 5 (G∗)‖,

� = 0, d = 1, �2 = 0. (3.93)

Plugging these parameters in Theorems 3.5, 3.6 and Corollaries 3.2, 3.4, 3.6 we
obtain several convergence results summarized in the following theorems.

Theorem 3.13 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` > 0, convex, and !-smooth. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
2=!

. (3.94)

Then, for each : ≥ 0 the iterations of RCD satisfy

E
[
‖G: − G∗‖2

]
≤ (1 − W`): '2

0 +
2W=‖∇ 5 (G∗)‖2

`
, (3.95)

where '0 = ‖G0 − G∗‖. Moreover, for any  ≥ 2 one can choose {W: }:≥0 as follows:

if  ≤ 2=!
`
, W: =

1
2=!

,

if  >
2=!
`

and : < :0, W: =
1

2=!
,

if  >
2=!
`

and : ≥ :0, W: =
2

4=! + `(: − :0)
,
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where :0 = d /2e. For this choice of W: the iterates produced by RCD satisfy

E
[
‖G +1 − G∗‖2

]
≤ 128'2

0 exp
(
− `

4=!
 

)
+ 144=‖∇ 5 (G∗)‖2

`2 
. (3.96)

Proof The result follows from Theorem 3.5 and Corollary 3.2. �

Similarly to SGD, RCD with constant stepsize converges to the neighborhood
of the solution and the radius of this neighborhood is proportional to

√
=‖∇ 5 (G∗)‖.

When∇ 5 (G∗) = 0 themethod converges linearly, but for general composite problems
with ∇ 5 (G∗) ≠ 0 it does not. Moreover, the bound from (3.96) shows that RCD has
= times slower exponentially decaying term in comparison to the standard GD. This
phenomenon is expected since RCD computes only one partial derivative at each
iteration, while GD needs = partial derivatives per step, i.e., one gradient evaluation.

In the next theorem, we provide the results in term of the functional values.

Theorem 3.14 Let the objective function 5 be (`, G∗)-quasi strongly convex with
` ≥ 0, convex, !-smooth and ℎ(G) ≡ 0. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
4=!

.

Then, for each : ≥ 0 the iterations of RCD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ (1 − W`) +1

'2
0
W
, when ` > 0, (3.97)

E
[
5 (G ) − 5 (G∗)

]
≤

'2
0

W( + 1) , when ` = 0, (3.98)

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1− W`)−(:+1) ,, =
∑ 
:=0 |: , '0 = ‖G0 − G∗‖2.

In particular, if ` > 0, then for any  ≥ 0 and for W: = W = 1/4=! the iterates
produced by RCD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤ 4=!'2

0 exp
(
− `

4=!
 

)
, (3.99)

where G = 1
, 

∑ 
:=0 |:G

: . Finally, if ` = 0, then for any  ≥ 1 the iterates
produced by RCD with stepsize W: = W = 1/4=! satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

8=!'2
0

 
, (3.100)

where G = 1
 +1

∑ 
:=0 G

: .

Proof The result follows from Theorem 3.6 and Corollaries 3.4, 3.6. We also take
into account that ℎ(G) ≡ 0 implying ∇ 5 (G∗) = 0. �

The above theorem shows thatRCD is = times slower rate thanGD, when ℎ(G) ≡ 0.
In the discussion after Theorem 3.13, we explain why this is natural.



3.1 Stochastic Gradient Descent 117

However, sub-linear convergence ofRCD for general composite problems (∇ 5 (G∗) ≠
0) is an undesired phenomenon. This is the case because the variance of the stochastic
estimator at the solution is not zero. Indeed, let 9 be sampled uniformly at random
from [=]. Then, we have

E
[
‖=[∇ 5 (G∗)] 94 9 − ∇ 5 (G∗)‖2

]
= E

[
‖=[∇ 5 (G∗)] 94 9 ‖2

]
− ‖∇ 5 (G∗)‖2

= (= − 1)‖∇ 5 (G∗)‖2,

which is not zero when = > 1 (otherwise RCD reduces to GD) and ∇ 5 (G∗) ≠ 0.
We notice that SGD has a similar issue: the variance of the plain stochastic

gradient estimator is not zero at the solution. This issue is addressed via using
variance reduction mechanism. Therefore, it is natural to apply a similar technique
to RCD. In particular, we consider the following estimator:

6: = =

(
[∇ 5 (G: )] 9: − [∇ 5 (|: )] 9:

)
4 9: + ∇ 5 (|: ), (3.101)

|:+1 =

{
G: , with probability ?,
|: , with probability 1 − ?,

where 9: is sampled uniformly at random from [=] independently from the previous
iterations. SGD (3.34) with estimator 6: from (3.101) is called Loopless Variance
Reduced Coordinate Descent (L-VRCD). L-VRCD is very similar to L-SVRG: instead
of sampling the random function from the sum, L-VRCD samples random component.
Up to this difference L-VRCD and L-SVRG are identical. In particular, |: in L-VRCD
is a point where full gradient computations happen with probability ?. Choosing
? = 1/=, we get that the expected cost of one iteration of L-VRCD is 2 partial
derivatives computations, which is of the same order as for RCD. Moreover, L-VRCD
also fits Assumption 3.3. The two following lemmas show this.

Lemma 3.10 Let 5 be convex and !-smooth. Then, for all : ≥ 0 the iterates produced
by L-VRCD satisfy

E:
[
‖6: − ∇ 5 (G∗)‖2

]
≤ 4=!+ 5 (G: , G∗) + 2=f2

: ,

where f2
:
= 2!+ 5 (|: , G∗).

Proof Using Young’s inequality ‖0 + 1‖2 ≤ 2‖0‖2 + 2‖1‖2, ∀0, 1 ∈ R=, we derive
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E:
[
‖6: − ∇ 5 (G∗)‖2

]
= E:

[
‖=( [∇ 5 (G: )] 9: − [∇ 5 (|: )] 9: )4 9: − ∇ 5 (G∗)‖2

]
≤ 2=2E:

[
‖ [∇ 5 (G: )] 9: 4 9: − [∇ 5 (G∗)] 9: 4 9: ‖2

]
+2E:

[
‖=[∇ 5 (|: ) − ∇ 5 (G∗)] 9: 4 9: − (∇ 5 (|: ) − ∇ 5 (G∗))‖2

]
≤ 2=

=∑
8=1
[∇ 5 (G: ) − ∇ 5 (G∗)]29:

+2E:
[
‖=[∇ 5 (|: ) − ∇ 5 (G∗)] 9: 4 9: ‖2

]
= 2=‖∇ 5 (G: ) − ∇ 5 (G∗)‖2 + 2=‖∇ 5 (|: ) − ∇ 5 (G∗)‖2

(B.10)
≤ 4=!+ 5 (G: , G∗) + 2= · 2!+ 5 (|: , G∗)︸           ︷︷           ︸

f2
:

,

which concludes the proof. �

Lemma 3.11 Let 5 be convex and !-smooth. Then, for all : ≥ 0 the iterates produced
by L-VRCD satisfy

E:
[
f2
:+1

]
≤ (1 − ?)f2

: + 2?!+ 5 (G: , G∗),

where f2
:
= 2!+ 5 (|: , G∗).

Proof By definition of |:+1 we have

E:
[
f2
:+1

]
= E:

[
2!+ 5 (|:+1, G∗)

]
= (1 − ?) · 2!+ 5 (|: , G∗)︸           ︷︷           ︸

f2
:

+? · 2!+ 5 (G: , G∗),

which concludes the proof. �

That is, Lemmas 3.10 and 3.11 imply thatAssumption 3.3 holdswith the following
parameters

� = 2=!, � = 2=, f2
: = 2!+ 5 (|: , G∗), �1 = 0,

� = ?!, d = ?, �2 = 0. (3.102)

Plugging these parameters in Theorems 3.5, 3.6 and Corollaries 3.3, 3.5, 3.6 we
obtain several convergence results summarized in the following theorems.

Theorem 3.15 Let the objective function 5 be convex, (`, G∗)-quasi strongly convex
with ` > 0, and !-smooth. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
6=!

. (3.103)

Then, for each : ≥ 0 the iterations of L-VRCD satisfy
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E
[
‖G: − G∗‖2

]
≤

(
1 −min

{
W`,

?

2

}) :
+0, (3.104)

where +0 = ‖G0 − G∗‖2 + f2
0

4=W2/?. Moreover, for any  ≥ 0 and

W =
1

6=!

the iterates produced by L-VRCD satisfy

E
[
‖G +1 − G∗‖2

]
≤

(
1 + 1

9?=

)
'2

0 exp
(
−min

{ `

6=!
,
?

2

}
 

)
, (3.105)

where '0 = ‖G0 − G∗‖.

Proof The first part (bound (3.104)) follows from Theorem 3.5. Next, Corollary 3.3
implies that for W = 1/6=! the iterates produced by L-VRCD satisfy

E
[
‖G +1 − G∗‖2

]
≤ Ω2

0 exp
(
−min

{ `

6=!
,
?

2

}
 

)
,

where Ω2
0 = ‖G

0 − G∗‖2 + f2
0/9?=!2. Using !-smoothness of 5 , we estimate E[f2

0 ] as
follows:

E[f2
0 ] = 2!+ 5 (G0, G∗) ≤ !2‖G0 − G∗‖2 = !2'2

0 . (3.106)

Plugging this upper bound in the definition of Ω2
0, we get the result. �

In contrast toRCD, L-VRCD converges linearly even when∇ 5 (G∗) ≠ 0. The rate of
convergence of L-VRCD is = times slower (if we take ? = 1/=, then min{ /̀6=!, ?/2} =
/̀6=!) than in the case of GD, while L-VRCD requires O(=) times fewer partial
derivative computations per step (in expectation, when ? ∼ 1/=) than GD.

In the next theorem, we provide the results in term of the functional values.

Theorem 3.16 Let the objective function 5 be convex, (`, G∗)-quasi strongly convex
with ` > 0, and !-smooth, and ℎ(G) ≡ 0. Assume that the stepsize W: = W satisfies

0 < W ≤ 1
12=!

.

Then, for each : ≥ 0 the iterations of L-VRCD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

(
1 −min

{
W`,

?

2

}) +1 '2
0
W
, when ` > 0, (3.107)

E
[
5 (G ) − 5 (G∗)

]
≤

'2
0

W( + 1) , when ` = 0, (3.108)

where G = 1
, 

∑ 
:=0 |:G

: , |: = (1 − min{W`, ?/2})−(:+1) ,, =
∑ 
:=0 |: , '0 =

‖G0 − G∗‖2. In particular, if ` > 0, then for any  ≥ 0 and
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W =
1

12=!

the iterates produced by L-VRCD satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

(
12=! + !

3?

)
'2

0 exp
(
−min

{ `

12=!
,
?

2

}
 

)
, (3.109)

where '0 = ‖G0 − G∗‖. Finally, if ` = 0, then for any  ≥ 1 the iterates produced by
L-VRCD with stepsize

W: = W = min


1
12=!

,

√√
?'2

0

4f2
0


satisfy

E
[
5 (G ) − 5 (G∗)

]
≤

(
12=! + 4!

√
=√
?

)
'2

0

 
, (3.110)

where G = 1
 +1

∑ 
:=0 G

: .

Proof The first part (bounds (3.107) and (3.108)) follows from from Theorem 3.6.
Next, Corollary 3.5 implies

E
[
5 (G ) − 5 (G∗)

]
≤ Ω2

0 exp
(
−min

{ `

12=!
,
?

2

}
 

)
,

whereΩ2
0 = 12=!‖G0−G∗‖2+f2

0/3?!. Using the upper bound (3.85) for f2
0 we derive

(3.109). Finally, Corollary 3.6 implies

E
[
5 (G ) − 5 (G∗)

]
≤

12=!'2
0

 
+

4'0

√
f2

0
√
? 

,

Plugging the upper bound (3.106) for f2
0 we get (3.110). �

The implications from the above result are almost the same as for RCD in the
same setup: since ∇ 5 (G∗) = 0, variance reduction does not change the rate in this
case.

3.1.5 Convergence of SGD for Over-Parameterized Models

Recent advances in Deep Learning are associated with training of very large neural
networks having billions of parameters. In such cases, the resulting model can be
such powerful that it can perfectly fit the training dataset, i.e., one can achieve a zero
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loss on the training data. Surprisingly, but this does not make the generalization of
such models worse, e.g., see [?, ?, ?]. Moreover, under certain assumptions on the
model, the corresponding loss function becomes convex-like, i.e., the loss function
is non-convex but satisfies some condition that holds for (strongly) convex functions,
for example, PŁ∗-condition [?]. Typically, under such assumptions standard methods
like SGD converge as in the (strongly) convex case. Therefore, assuming (strong)
convexity of the objective function is a meaningful simplification for the analysis of
stochastic methods for such models that are usually called over-parameterized.

That is, consider the finite-sum minimization problem (3.16), where functions 58
satisfy so-called interpolation condition: there exists G∗ ∈ R= such that

58 (G∗) = min
G∈R=

58 (G) ∀8 ∈ [<] . (3.111)

In other words, we assume that there exists a common optimum for all terms in
the finite-sum. Taking into account that in the case of empirical risk minimization
58 (G) corresponds to the loss of the model for the 8-th data point, one can see that the
interpolation condition implies that the model interpolates the training data perfectly.

Interpolation condition (3.111) implies useful properties for the analysis of the
methods. In particular, if 58 is !8-smooth for all 8 ∈ [<], then for 9 being sampled
uniformly at random from [<] we have

E 9
[
‖∇ 5 9 (G)‖2

]
=

1
<

<∑
8=1
‖∇ 58 (G)‖2 ≤

2
<

<∑
8=1

!8 ( 58 (G) − 58 (G∗))

≤ 2!max ( 5 (G) − 5 (G∗)) . (3.112)

This means that in this setup SGD with uniform sampling satisfies Assumption 3.3
with the following parameters:

� = !max, � = 0, f2
: ≡ 0, �1 = 0, � = 0, d = 1, �2 = 0. (3.113)

We notice here that�1 = 0 and�2 = 0meaning thatSGDwith constant stepsize con-
verges to the exact solution asymptotically in expectation (see Theorems 3.5 and 3.6).
In particular, when 5 is quasi-strongly convex SGD converges linearly in this setup.
Previously, we considered the variance reduction mechanism as a tool to achieve
this property. Therefore, from this perspective variance reduction is not needed for
over-parameterized models. This observation is also supported by the fact that vari-
ance reduced methods do not behave well when they are combined with some tricks
popular in deep learning [?].

Going back to the analysis of SGD under over-parameterization, we introduce an
assumption relaxing (3.112).

Assumption 3.5 (RelaxedWeakGrowthCondition (R-WGC))There exist constants
L > 0, [ > 0, and f∗ ≥ 0 such that for all G ∈ R=

E 9
[
‖∇ 5 9 (G)‖2

]
≤ 2L[ ( 5 (G) − 5 (G∗)) + f2

∗ , (3.114)
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where 9 is sampled uniformly at random from [<].

If f∗ = 0, then condition (3.114) is called Weak Growth Condition (WGC). If all
functions 58 are convex, then WGC implies interpolation condition (3.111): indeed,
we have

E 9
[
‖∇ 5 9 (G∗)‖2

]
≤ 2L[ ( 5 (G∗) − 5 (G∗)) = 0,

implying ∇ 58 (G∗) = 0 for all 8 ∈ [<], i.e., 58 (G∗) = minG∈R= 58 (G) for all 8 ∈ [<] due
to convexity.

Therefore, constant f2
∗ from (3.114) can be seen as a measure of how over-

parameterized the model is: the smaller f2
∗ , the more over-parameterized the

model. Moreover, when each 58 is !8-smooth and has a minimizer G∗
8
, i.e.,

G∗
8
= minG∈R= 58 (G), we have

E 9
[
‖∇ 5 9 (G)‖2

]
=

1
<

<∑
8=1
‖∇ 58 (G)‖2 ≤

2
<

<∑
8=1

!8
(
58 (G) − 58 (G∗8 )

)
=

2
<

<∑
8=1

!8 ( 58 (G) − 58 (G∗)) +
2
<

<∑
8=1

!8
(
58 (G∗) − 58 (G∗8 )

)
≤ 2!max ( 5 (G) − 5 (G∗)) +

2
<

<∑
8=1

!8
(
58 (G∗) − 58 (G∗8 )

)
,

i.e., R-WGC holds with L = !max, [ = 1, f2
∗ =

2
<

∑<
8=1 !8 ( 58 (G∗) − 58 (G∗8 )). In this

case, f2
∗ = 0 iff 58 (G∗) = minG∈R= 58 (G) for all 8 ∈ [<]. One can also note that

up to the smoothness constants f2
∗ measures functional sub-optimality of G∗ for all

summands on average.
The discussion above explains why Assumption 3.5 is adequate for describing

over-parameterized or almost over-parameterizedmodels.Moreover, this assumption
also perfectly fits the general framework we consider earlier in this Chapter. That is,
Assumption 3.5 implies that Assumption 3.3 holds the following parameters:

� = L[, � = 0, f2
: ≡ 0, �1 = f

2
∗ , � = 0, d = 1, �2 = 0. (3.115)

Eduard: formulate the results, say few words about non-smoothness (composi-
tional one)

3.1.6 Convergence of SGD with and without Averaging

Eduard: mention here that SGD has different rates for the last iterate and for the
averaged iterate (paper by Taylor and Bach), say there that one can construct poten-
tials via computer-assisted analysis; say that averaging makes the limit distribution
normal, mention the results about asymptotic normality and non-normality. I guess,
here we will not have much proofs.
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3.1.7 Convergence of SGD under Structured Non-Convexity

Eduard: I am not sure that we need much details here. Maybe we can just mention
that one can derive some results under PL and other convex-like assumptions. We
can say that the analysis is very similar to what we discussed in this part.

3.2 Catalyst: a universal framework for acceleration of
randomized optimization methods

From given starting point G0 ∈ R= Catalyst generates the points {G: }:≥0 solving the
inner problem

G: ≈ arg min
G∈R=

{
5 (G) + ^

2
G − H:−12} (3.116)

with methodM and compute auxiliary variable H: using Nesterov’s extrapolation
step

H: = G: + V: (G: − G:−1), (3.117)

with V: = U:−1 (1−U:−1)
U2
:−1+U:

, where U: ∈ (0, 1) and updated from equation U2
:
= (1 −

U: )U2
:−1 + @U: . That is, at iteration : method compute approximately solution of the

problem

3.2.1 Analysis of standard Catalyst algorithm

Before...
The Moreau envelope results from adding the quadratic regularization to 5 :

� (G) := min
I∈R=

{
5 (I) + ^

2
‖I − G‖2

}
where ^ is the positive parameter. The proximal operator is the unique minimizer of
, that is,

3 (G) := prox 5 /^ (G) = arg min
I∈R=

{
5 (I) + ^

2
‖I − G‖2

}
.

The next proposition characterizes the smoothing effect of the Moreau Envelope.

Proposition 3.1 (Regularization properties of the Moreau Envelope) Given a
convex continuous function 5 and a regularization parameter ^ > 0, consider the
Moreau Envelope �. Then,

1. � is convex and minimizing 5 and � are equivalent in the sense that
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min
G∈R=

� (G) = min
G∈R=

5 (G).

Moreover the solution set of the two above problems coincide with each other.
2. � is continuously differentiable even 5 is not and:

∇� = ^(G − 3 (G)).

Moreover � is !� -smooth with constant !� = ^.
3. If 5 is `-strongly convex, then � is `� -strongly convex with constant `� = `^

`+^ .

H:+1 = H: − 1
!�
∇� (H: ) and H:+1 = G:+1 + V:+1 (G:+1 − G: ),

where V:+1 is Nesterov’s extrapolation parameter. By noticing that ∇� (H) = ^(H −
3 (H)) and !� = ^, we obtain in fact

G:+1 = 3 (H: ) and H:+1 = G:+1 + V:+1 (G:+1 − G: ),

which is known as the accelerated proximal point algorithm.
Given a proximal center G, a smoothing parameter ^, and an accuracy Y > 0, we

denote the set of Y-approximations of the proximal operator 3 (G) by

3 Y (G) := {I ∈ R= s.t. ℎ(I) − ℎ(I∗) ≤ Y} , where ℎ(I) = 5 (I) + ^
2
‖G − I‖2

and ℎ(I∗) is the minimum function value of ℎ(I).

Theorem 3.17 Consider the sequences {G: }:≥0 and {H: }:≥0 produced by Catalyst,
assuming that G: is in 3 Y: (H:−1) for all : ≥ 1. Then,

5 (G: ) − 5 (G∗) ≤ �:−1
©«
√
(1 − U0) ( 5 (G0) − 5 (G∗)) + W0

2
‖G∗ − G0‖2 + 3

:∑
9=1

√
Y 9

� 9−1

ª®¬
2

,

where

W0 = (^ + `)U0 (U0 − @) and �: =

:∏
9=1
(1 − U 9 ) with �0 = 1.

Proposition 3.2 In Catalyst algorithm, choose U0 =
√
@ and

Y: =
2
9

(
5 (G0) − 5 (G∗)

)
(1 − d): , with d <

√
@.

Then, the sequence of iterates {G: }:≥0 satisfies

5 (G: ) − 5 (G∗) ≤ 8
(√@ − d)2

(1 − d):+1 ( 5 (G0) − 5 (G∗)).
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3.2.2 Modifications and generalizations of Catalyst

TODO for Eduard: polish the section once the previous section is finished.
Note that in the both versions of Catalyst presented above we faced the need

to use $̃ (·) notation to write out their convergence rates. The weak point of this
analysis is that it inevitably burdens the estimates with the factor of $ (log 1

Y
), due

to which the estimates of Catalyst-accelerated methods are slightly more complex
than those of individual accelerated versions of these methods. However, there is a
way to overcome this complication. It turns out that one can select another stopping
condition in acceleration envelope so that the convergence rate of Catalyst with this
condition is free of logarithmic factors.

TODO for Dmitry P.: once Section 3.2.1 is finished, one needs to check the
consitence of the notation.

Let us consider the following Monteiro–Svaiter stopping condition:

‖∇ℎ: (G)‖2 ≤
^

2
‖G − H:−1‖2. (3.118)

If we use this condition in a slightly modified Catalyst algorithm, the convergence
rate is still asymptotically the same as in Section 3.2.1 (we take it without proof).
But we can transform the condition (3.118) and get a new one:

‖G − G∗‖2 ≤
^

3^ + 2!
‖H:−1 − G∗‖2, (3.119)

where G∗ is an exact solution of the auxiliary minimization problem. How does it
connected with (3.118)?

Proposition 3.3 Condition (3.119) is sufficient for condition (3.118).

Proof Using the triangle inequality,

‖H:−1 − G∗‖2 − ‖G − G∗‖2 ≤ ‖G − H:−1‖2.

Therefore, it is sufficient to fulfill the following condition:

‖∇ℎ: (G)‖2 ≤
^

2

(
‖H:−1 − G∗‖2 − ‖G − G∗‖2

)
(⇒ (3.118))

On the other hand, due to the (! + ^)-strong convexity of ℎ: , it holds that

‖∇ℎ: (G)‖2 ≤ (! + ^)‖G − G∗‖2.

Together with the previous statement, it implies that

^

2

(
‖H:−1 − G∗‖2 − ‖G − G∗‖2

)
≤ (! + ^)‖G − G∗‖2

⇔ ‖G − G∗‖2 ≤
^

3^ + 2!
‖H:−1 − G∗‖2



126 3 Convex Stochastic Optimization: Smooth Case

is sufficient for (3.118). �

The next theorem shows that the condition (3.119) is exactly the desired stopping
conditionwithwhich the convergence rate ofCatalyst is free of redundant logarithmic
term.

Theorem 3.18 Let us use algorithmM to solve the auxiliary minimization problem
in Catalyst. Assume thatM produces a sequence of points GC such that

ℎ: (GC ) − ℎ: (G∗) ≤ � · ! exp
(
− ^

^ + ! C
)
, (3.120)

for some constant �. Then, the total complexity of Catalyst with M and stopping
condition (3.119) is

# = $

(√
!'2

Y

)
. (3.121)

Proof Due to the ^-strong convexity of ℎ: ,

^

2
‖GC − G∗‖22 ≤ ℎ: (G

C ) − ℎ: (G∗),

then using (3.120) we get

‖GC − G∗‖2 ≤ � ·
√

2!
^

exp
(
− ^

2(^ + !) C
)
.

Considering the condition (3.119), number of sufficient iterations ) forM is deter-
mined from

� ·
√

2!
^

exp
(
− ^

2(^ + !))
)
=

^

3^ + 2!
‖G0 − G∗‖2, , (3.122)

where G0 is set to H:−1, and hence

) = $

(
^ + !
^

log

(
3^ + 2!

^

√
2!
^

))
.

Sincewe choose ^ = !, number of sufficient iterations is) = $ (1). Using the reason-
ing from Theorem’s ? proof, we obtain (3.121). TODO: theorem from Alexander’s
part �

We see that convergence of Catalyst with stopping condition (3.119), as well as
complexity of auxiliary minimization problem, is devoided of the logarithmic factor.
Moreover, complexity of auxiliary minimization problem is independent on desired
accuracy Y and equal to some small constant. It is very practical property of this
Catalystmodification, because it allows to choose the number of iterations for internal
method manually, without using any stop condition nor additional computations.
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Eduard: I think it is better to move this and the next paragraphs to end of this
subsection. Taking into account the subsubsection’ed Catalyst CDM example, it is
more readable to leave the following content here

The simplest Catalyst algorithm described there is only applicable to the first
order optimization methods and for smooth convex minimization problems, but the
scope of Catalyst-like universal acceleration frameworks is not limited to this. The
concept of Catalyst is evolved in Universal Meta-algorithm framework which, in
turn, is applicable to tensor optimization methods (of a second- or more order), as
well as for saddle point and composite optimization problems. Besides, this method
provides the means to implement such an advanced technique as oracle complexity
separation, so called gradient sliding.We see that the simplicity ofCatalyst basement
allows one to successfully generalize it on many different settings.

Another universal acceleration framework, that is more general than Catalyst,
is Strongly convex accelerated hybrid proximal extragradient method. It is notable,
that inexactness of proximal operator in it is taken into account with a framework
of duality gap, that allows to mix the additive and multiplicative error terms. But
the main advantage of this framework is that it exploits the strong convexity of the
problem. The complexity of !-smooth `-strongly convex problems is

$

(√
`

!
log

1
Y

)
, (3.123)

and if the problem is composite and one of its terms is `-strongly convex, this
framework guarantee the convergence rate similar to corresponding to (3.123) for
the outer algorithm (certainly not such a simple as (3.123) and with a lot of details
we omit in our exposition).

3.2.2.1 Catalyst accelerated Coordinate Descent

Catalyst algorithm is very useful when the individual accelerated version of some
method is computationally inefficient. In some cases, Catalyst is only an option to
accelerate method preserving its computational advantages.

Let’s considerCDM algorithm as the internal forCatalyst. The only differencewith
the standard CDM will be that components to step along are chosen not uniformly,
but in proportional to coordinate-wise Lipschitz smoothness constants of ℎ: (equal
to ^ + !8). For the sequence of points GC generated by CDM we have:

E[ℎ: (GC )] − ℎ: (G∗) ≤ (ℎ: (G0) − ℎ: (G∗)) · exp
(
− ^∑=

8=1 (^ + !8)
C

)
, (3.124)

that is similar to condition in Theorem 3.18. But to estimate complexity of Catalyst
with CDM in expectation, we should modify the reasoning of Theorem 3.18. Namely,
we extend Theorem 3.18 with the following
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Lemma 3.12 Let Ỹ denote the r.h.s. of (3.122) and ) (Ỹ) be expressed from (3.122)
as a function of Ỹ. Assume that internal method stops immediately after fulfillment
of (3.119). Then, the expected total complexity of Catalyst with M and stopping
condition (3.119) is

E[#] =  · () (Ỹ) + 1) = $
(√

!'2

Y

)
Proof Let ) be the number of iterations to fulfill (3.119) by M in expectation.
Further, we prove that the expected number E[)] of iterations ofM is bounded by
) (Y) + 1, that implies the statement of lemma. So,

P() ≥ C) ≤ P
(
‖GC − G∗‖2 ≥ Ỹ

)
≤ min

{
1, E[‖GC − G∗‖22] / Ỹ

2} (Markov inequality)

≤ min
{
1, �1 · exp

(
− ^∑=

8=1 (^ + !8)
C

)}
,

where the latter follows from (3.124) and strong-convexity of ℎ: , and �1 depends
only on ! and ^. Finally,

E[)] =
∞∑
C=1
P() ≥ C) ≤

∫ ) ( Ỹ)

0
3C + �1 · exp

(
^∑=

8=1 (^ + !8)

)
·
∫ ∞

) ( Ỹ)
exp (−C)

= ) (Ỹ) + �1 · exp
(
− ^∑=

8=1 (^ + !8)
) (Ỹ)

)
≤ ) (Ỹ) + 1,

where the latter follows from (3.122) (we exactly set ) (Ỹ) such that it holds). �

It is also important that since (3.124) we used coordinate Lipschitz smoothness

(
∑=
8=1 (^+!8) instead of ^+!), so the final complexitywill be theE[#] = $

(
=

√
!'2

Y

)
,

where ! = 1
=

∑=
8=1 !8 (the proof is quite similar to that for Theorem 3.18).

Now, let us estimate the algorithmic complexity of Catalyst with CDM (i.e., in
terms of number of arithmetic operations needed). Assume that one step of CDM
takes $ (B) a.o. (it is convenient for the sparse optimization problems). So, very step
of CDM within Catalyst also takes $ (B). But it is also necessary to perform one
gradient step once an outer iteration of Catalyst, and it takes$ (=B) a.o. On the other
hand, we must perform ) ∼ = steps of internal method between the gradient steps, so
the amortized complexity remains$ (B) a.o. per CDM step. The resulting algorithmic

complexity of Catalyst with CDM is $
(
B= ·

√
!'2

Y

)
.

There are another ways to accelerate CDM: in particular, by modifying the method

itself — its oracle complexity is $
(
=

√
!̃'2

Y

)
, where !̃ =

(
1
=

∑=
8=1
√
!8

)2
. Neverthe-

less, such an acceleration leads to worsening of algorithmic complexity of CDM
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iteration from $ (B) a.o. to $ (=) a.o., so the resulting algorithmic complexity is

$

(
=2 ·

√
!̃'2

Y

)
. Thus, the direct acceleration makes us to forget about additional

efficiency of CDM iteration (possibly, B � =), whilst the Catalyst with CDM gains
very convenient and expectable accelerated and efficient complexity.

3.3 Obtaining estimates of the rate of convergence on average
based on inexact gradients and batching

Estimates of the rate of convergence of optimal methods for smooth (strongly)
convex stochastic optimization can be obtained from the results on the convergence
of optimal methods under conditions of inexact gradients with small non-random
noise.

Consider the stochastic optimization problem

min
G∈&
E 5 (G, b), (3.125)

where & ⊂ R= is a closed and convex set, b is a random variable, expectation
E 5 (G, b) is defined and finite for any G ∈ &, 5 is `-strongly convex (` ≥ 0) and has
!-Lipschitz gradient, i.e.

5 (G) + 〈∇ 5 (G), H − G〉 + `
2
‖H − G‖22 6 5 (H) 6 5 (G) + 〈∇ 5 (G), H − G〉 + !

2
‖H − G‖22.

Suppose that we have access to the stochastic gradient ∇ 5 (G, b) that satisfies

E[∇ 5 (G, b)] ≡ ∇ 5 (G),

for all G ∈ &. The goal of this section is to show that the convergence rate

$̃

(
min

{
!'2

# ?
+ X1 + # ?−1X2, !'

2 exp
(
−

( `
!

) 1
? #

2

)
+ X1 +

(
!

`

) ?−1
2

X2

})
,

can be obtained based on results of convergence in conditions of inexact gradients
with low noise of non-random nature, where ' = ‖G∗ − G0‖, G∗ is the solution of
3.125, ? = 1 corresponds to stochastic gradient descent, and ? = 2 to accelerated
stochastic descent.

We introduce the concept of inexact model. Let us define the function kX (H, G)
as the (X, !) model of the objective 5 (G) if for all G, H ∈ & the function kX is convex
w.r.t H, kX (H, H) = 0, and

5 (G)+kX (H, G)+
`

2
‖H−G‖22−X1 6 5 (H) 6 5 (G)+kX (H, G)+

!

2
‖H−G‖22+X2. (3.126)
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Should we put the graphic explaining the concept of the model and example (com-
posite function)?

3.3.0.1 Gradient Method for the Inexact Model of Objective

Algorithm 1 Gradient Method
1: Input: Starting point G0, strong convexity constant ` ≥ 0, Lipschitz gradient constant ! > 0.
2: for : ≥ 0 do
3:

q:+1 (G) := kX: (G, G: ) +
!

2
‖G − G: ‖22,

G:+1 := arg min
G∈&

q:+1 (G) . (3.127)

4: end for
5: Output: H# = 1∑#

8=1 @
#−8

∑#
8=1 @

#−8G8

Lemma 3.13 Let k(G) be a convex function and

H = arg min
G∈&

{
k(G) + V

2
‖G − I‖22 +

W

2
‖G − D‖22

}
,

where V ≥ 0 and W ≥ 0. Then,

k(G) + V2 ‖G − I‖
2
2 +

W

2 ‖G − D‖
2
2

≥ k(H) + V2 ‖H − I‖
2
2 +

W

2 ‖H − D‖
2
2 +

V+W
2 ‖G − H‖

2
2 , ∀G ∈ &.

Proof Using the optimality criteria

∃6 ∈ mk(H), 〈6 + V2∇H ‖H − I‖
2
2 +

W

2∇H ‖H − D‖
2
2 , G − H〉 ≥ 0, ∀G ∈ &.

From V + W–strong convexity k(G) + V2 ‖G − I‖
2
2 +

W

2 ‖G − D‖
2
2

k(G) + V2 ‖G − I‖
2
2 +

W

2 ‖G − D‖
2
2 ≥ k(H) +

V

2 ‖H − I‖
2
2 +

W

2 ‖H − D‖
2
2

+ 〈6 + V2∇H ‖H − D‖
2
2 +

W

2∇H ‖H − I‖
2
2 , G − H〉 +

V+W
2 ‖G − H‖

2
2

The last two inequalities prove the lemma. �

Let us denote @ = 1 − `

!
.

Theorem 3.19 After # steps of Algorithm 1 the following inequality holds:

5 (H# ) − 5 (G∗) ≤ min
{
!'2

2#
,
!'2

2
exp

(
− `
!
#

)}
+ 1∑#

8=1 @
#−8

#∑
8=1

@#−8 (X8−1
1 + X8−1

2 ).
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Proof From (3.126) we obtain

5 (G# ) ≤ 5 (G#−1) + kX#−1 (G# , G#−1) + !
2

G# − G#−12
2 + X

#−1
2 .

Using Lemma 3.13 for (3.127):

5 (G# ) ≤ 5 (G#−1) + kX#−1 (G, G#−1) + !
2

G − G#−12
2 −

!

2
G − G# 2

2 + X
#−1
2 .

Using the left inequality in (3.126):

5 (G# ) ≤ 5 (G) + ! − `
2

G − G#−12
2 −

!

2
G − G# 2

2 + X
#−1
1 + X#−1

2 . (3.128)

Setting G = G∗:

1
2

G∗ − G# 2
2 ≤

1
!

(
5 (G∗) − 5 (G# ) + X#−1

1 + X#−1
2

)
+ @

2
G∗ − G#−12

2 .

Recursively we get that

1
2

G∗ − G# 2
2 ≤

#∑
8=1

(
@#−8

!
( 5 (G∗) − 5 (G8) + X8−1

1 + X8−1
2 )

)
+ @

#

2
G∗ − G02

2 .

Considering that 1
2
G∗ − G# 2

2 ≥ 0 and the definition of H# , we get:

@#

2
G∗ − G02

2 ≥
#∑
8=1

(
@#−8

!
( 5 (G8) − 5 (G∗) − X8−1

1 − X8−1
2 )

)
≥ ( 5 (H# ) − 5 (G∗))

#∑
8=1

@#−8

!
− 1
!

#∑
8=1

@#−8 (X8−1
1 + X8−1

2 ).

Dividing the both sides of the last inequality by
∑#
8=1

@#−8

!
:

5 (H# ) − 5 (G∗) ≤
@#

2∑#
8=1

@#−8

!

G∗ − G02
2 +

1∑#
8=1 @

#−8

#∑
8=1

@#−8 (X8−1
1 + X8−1

2 ).

Using that
∑#
8=1

@#−8

!
≥ 1

!
and @#−8 ≥ @# for all 8 ≥ 0, we have the following

inequality:

5 (H# ) − 5 (G∗) ≤
!

2
min

{
@# ,

1
#

} G∗ − G02
2 +

1∑#
8=1 @

#−8

#∑
8=1

@#−8 (X8−1
1 + X8−1

2 ).

That inequality and @# ≤ exp(− `
!
#) complete the proof of the theorem. �
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Assumption 3.6 Let sequences X:1 (H, G) and X
:
2 (: ≥ 0) be given. Assume that exists

constant X̃1 such that

E
[
X:1 (H, G) |X

:−1
1,2 , X

:−2
1,2 , ...

]
≤ X̃1,

and
E

[
X:2 |X

:−1
1,2 , X

:−2
1,2 , ...

]
≤ X̂2.

Theorem 3.20 Let X:1 and X:2 (: ≥ 0) satisfy Assumption 3.6. Then after # steps of
Algorithm 1 the following inequality holds:

E[ 5 (H# )] − 5 (G∗) ≤ min
{
!'2

2#
,
!'2

2
exp

(
− `
!
#

)}
+ X̃1 +$ (X̂2). (3.129)

Proof Taking a expectation from inequality in 3.19

E 5 (H# ) − 5 (G∗) ≤ min
{
!'2

2#
,
!'2

2
exp

(
− `
!
#

)}
+ 1∑#

8=1 @
#−8

#∑
8=1

@#−8E(X8−1
1 + X8−1

2 ).

By Assumption 3.6 we obtain

E 5 (H# ) − 5 (G∗) ≤ min
{
!'2

2#
,
!'2

2
exp

(
− `
!
#

)}
+ X̃1 +$ (X̂2), (3.130)

since the second moment of sub-Gaussian sequence
√
X8−1

2 has the bound EX8−1
2 ≤

4X̂2. �

3.3.0.2 Fast Gradient Method for the Inexact Model of Objective

For the case of the Fast Gradient Method we have to change the definition of the
inexact model of the objective. Let us denote the function kX (H, G) as the (X, !)
model of the objective 5 (G) if for all G, H ∈ & the function kX is convex w.r.t H,
kX (H, H) = 0, and

5 (G) +kX (H, G) +
`

2
‖H− G‖22 − X1 (H, G) ≤ 5 (H) ≤ 5 (G) +kX (H, G) +

!

2
‖H− G‖22 + X2.

(3.131)
Note, that in this definition we assume that X1 (H, G) is a function of two arguments
H, G ∈ &.

The Fast Gradient Method is listed as Algorithm 2

Lemma 3.14 For all G ∈ & the following inequality holds
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Algorithm 2 Fast Gradient Method
1: Input: Starting point G0, strong convexity constant ` ≥ 0, Lipschitz gradient constant ! > 0.
2: Set H0 := G0, D0 := G0, U0 := 0, �0 := U0
3: for : ≥ 0 do
4: Constant U:+1 is the largest solution of equation

�:+1 (1 + �:`) = !U2
:+1, �:+1 := �: + U:+1. (3.132)

5:
H:+1 :=

U:+1D: + �: G:
�:+1

. (3.133)

6:
q:+1 (G) = U:+1kX: (G, H:+1) +

1 + �:`
2

‖G − D: ‖22 +
U:+1`

2
‖G − H:+1 ‖22,

D:+1 := arg
G∈&
min q:+1 (G) . (3.134)

7:

G:+1 :=
U:+1D:+1 + �: G:

�:+1
. (3.135)

8: end for
9: Output: G# ,

�:+1 5 (G:+1) − �: 5 (G: ) +
1 + �:+1`

2
G − D:+12

2 −
1 + �:`

2
G − D:2

2

≤ U:+1 5 (G) + �:X:1 (G
: , H:+1) + U:+1X:1 (G, H

:+1) + �:+1X:2 .

Proof By (3.131)

5 (G:+1) ≤ 5 (H:+1) + kX: (G:+1, H:+1) +
!

2
G:+1 − H:+12

2 + X
:
2 .

From (3.135) and (3.133) for sequences G:+1 and H:+1 we have, that

5 (G:+1) ≤ 5 (H:+1) + kX:
(
U:+1D:+1 + �:G:

�:+1
, H:+1

)
+ !

2

U:+1D:+1 + �:G:�:+1
− H:+1

2

2
+ X:1

= 5 (H:+1) + kX:
(
U:+1D:+1 + �:G:

�:+1
, H:+1

)
+
!U2

:+1
2�2

:+1

D:+1 − D:2
2 + X

:
2 .

Since the model kX: (·, H:+1) is convex, we obtain
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5 (G:+1) ≤ �:

�:+1

(
5 (H:+1) + kX: (G: , H:+1)

)
+ U:+1
�:+1

(
5 (H:+1) + kX: (D:+1, H:+1)

)
+
!U2

:+1
2�2

:+1

D:+1 − D:2
2 + X

:
2 .

From (3.132) for sequence U:+1 we have

5 (G:+1) ≤ �:

�:+1

(
5 (H:+1) + kX: (G: , H:+1)

)
+ U:+1
�:+1

(
5 (H:+1) + kX: (D:+1, H:+1)

+ 1 + �:`
2U:+1

D:+1 − D:2
2

)
+ X:2 .

(3.136)

Using Lemma 3.13 for optimization problem (3.134) we obtain

U:+1kX: (D:+1, H:+1) +
1 + �:`

2
D:+1 − D:2

2 +
U:+1`

2
D:+1 − H:+12

2

+ 1 + �:+1`
2

G − D:+12
2

≤ U:+1kX: (G, H:+1) +
1 + �:`

2
G − D:2

2 +
U:+1`

2
G − H:+12

2 .

Since 1
2
D:+1 − H:+12

2 ≥ 0

U:+1kX: (D:+1, H:+1) +
1 + �:`

2
D:+1 − D:2

2

≤ U:+1kX: (G, H:+1) +
1 + �:`

2
G − D:2

2

− 1 + �:+1`
2

G − D:+12
2 +

U:+1`

2
G − H:+12

2 .

(3.137)

By combining inequalities (3.136) and (3.137)

5 (G:+1) ≤ �:

�:+1

(
5 (H:+1) + kX: (G: , H:+1)

)
+ U:+1
�:+1

(
5 (H:+1) + kX: (G, H:+1) +

`

2
G − H:+12

2

+ 1 + �:`
2U:+1

G − D:2
2 −

1 + �:+1`
2U:+1

G − D:+12
2

)
+ X:2 .

By the left inequality (3.131):
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5 (G:+1) ≤ �:

�:+1
5 (G: ) + U:+1

�:+1
5 (G)

+ 1 + �:`
2�:+1

G − D:2
2 −

1 + �:+1`
2�:+1

G − D:+12
2

+ �:

�:+1
X:1 (G

: , H:+1) + U:+1
�:+1

X:1 (G, H
:+1) + X:2 .

The last inequality proves Lemma 3.14. �

Theorem 3.21 After # steps of the Algorithm 2 the following inequality holds:

5 (G# ) − 5 (G∗) ≤
'2

2�#
+ 1
�#

#−1∑
:=0

�:X
:
1 (G

: , H:+1)

+ 1
�#

#−1∑
:=0

U:+1X
:
1 (G∗, H

:+1) + 1
�#

#−1∑
:=0

�:+1X
:
2 .

Proof By summing inequalities from Lemma 3.14 for : from 0 to # − 1 and, by
setting G = G∗, we have

�# 5 (G# ) ≤ �# 5 (G∗) +
1
2
‖G∗ − D0‖22 −

1 + �# `
2

‖G∗ − D# ‖22 +
#−1∑
:=0

�:X
:
1 (G

: , H:+1)

+
#−1∑
:=0

U:+1X
:
1 (G∗, H

:+1) +
#−1∑
:=0

�:+1X
:
2 .

Since 1+�# `
2 ‖G∗ − D# ‖22 ≥ 0

�# 5 (G# ) − �# 5 (G∗) ≤
1
2
‖G∗ − D0‖22 +

#−1∑
:=0

�:X
:
1 (G

: , H:+1)

+
#−1∑
:=0

U:+1X
:
1 (G∗, H

:+1) +
#−1∑
:=0

�:+1X
:
2 .

The last inequality proves the theorem. �

Lemma 3.15 For all # ≥ 1,

1
�#
≤ min

{
4!
#2 , ! exp

(
−(# − 1)

√
`

!

)}
.

Proof At first, let us consider the case when ` = 0. By (3.132)

�:+1 = !U
2
:+1 = ! (�:+1 − �: )

2 = !
(
�

1/2
:+1 − �

1/2
:
)2 (�1/2

:+1 + �
1/2
:

)2

≤ 4!�:+1
(
�

1/2
:+1 − �

1/2
:

)2
.
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Therefore 1
2
√
!
≤ �1/2

:+1 − �
1/2
:

, which implies 1
�#
≤ 4!

# 2 .

Now, assume that ` > 0. By (3.132)

�:+1�:` ≤ !U:+1 = ! (�:+1 − �: )2

= !

(
�

1/2
:+1 − �

1/2
:

)2 (
�

1/2
:+1 + �

1/2
:

)2
≤ 4!�:+1

(
�

1/2
:+1 − �

1/2
:

)2
.

Therefore `�: ≤ 4!
(
�

1/2
:+1 − �

1/2
:

)2
. Then

(
1 + 1

2

√
`

!

)
�

1/2
:
≤ �1/2

:+1.
By the fact that �0 = U0 = 0 and �1 = U1 = !U

2
1 we have

�# ≥
(
1 + 1

2

√
`

!

)2

�#−1 ≥
(
1 + 1

2

√
`

!

)2(#−1)

�#−1

≥
(
1 + 1

2

√
`

!

)2(#−1)

�1 ≥
(
1 + 1

2

√
`

!

)2(#−1) 1
!
.

Therefore, since 1 + G ≤ 4G , we have

1
�#
≤ !

(
1 + 1

2

√
`

!

)−2(#−1)

≤ ! exp
(
−(# − 1)

√
`

!

)
.

Lemma 3.16 For all # ≥ 1,

1
�#

#−1∑
:=0

�:+1 ≤ $
(
min

{
#,

√
!

`

})
. (3.138)

Proof First, let ` = 0. Note, that U: ≥ 0 for : = 0, . . . , # . Indeed, by (3.132), we
have !U2

:+1 = �: + U:+1. By taking the largest solution of this quadratic equation
we have that

U:+1 =

√
1
!2 + 4

!
�: + 1

!

2
> 0, : = 0, . . . , # − 1.

Therefore �: = �:+1 − U:+1 ≤ �:+1 for all : ≥ 0. Finally,

1
�#

#−1∑
:=0

�:+1 ≤ #.

Now, let ` > 0. By (3.132) 1 + `�: = ! (�:+1−�: )2
�:+1

. Then, �: satisfies the
following recurrence equation

!�2
:+1 − 2!�:+1�: + !�2

: − �:+1 − `�:�:+1 = 0.

Equivalently,
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�:+1 =

√(
1
!
+ 2�: + `

!
�:

)2
− 4�2

:
+

(
1
!
+ 2�: + `

!
�:

)
2

.

Let us define the recurrence �̃:+1 = �̃:
(
`

!
+
√
`

!

√
`

!
+4

2 + 1
!

)
. It is easy to verify

that �:+1
�:
≥ �̃:+1

�̃:
and therefore �:

�8
≥ �̃:

�̃8
∀8 < :, ∀: ≥ 1. Thus,

:∑
8=0
�8

�:
≤

:∑
8=0
�̃:

�̃8
.

By (3.132) �0 = 0 and U1 = �1 =
1
!
. Let �̃0 = 0 and �̃1 =

1
!
. Then for all : ≥ 1

�̃: = �̃1�
:−1, where � =

(
`

!
+
√
`

!

√
`

!
+4

2 + 1
!

)
. Therefore,

#∑
8=0
�̃8

�̃:
=
�̃1 (�: − 1)
� − 1

1
�̃1�:−1

≤ �

� − 1
≤ �

� − 1
!

=

`

!
+

√
`

!

√
`

!
+ 4 + 2

!

`

!
+

√
`

!

√
`

!
+ 4

≤ 1 +

√
!

`
.

Assumption 3.7 Let sequence X:1 (H, G) and X
:
2 (: ≥ 0) be given. Let the random

variable X:1 (G, H) has such a condition expectation that

• E
[
X:1 (G, H) |X

:−1
1 (G, H), X:−1

2 , X:−2
1 (G, H) . . .

]
≤ X̃:1 (G−H) ∀G, H ∈ &, where X̃

:
1 (·)

is a non-random function of one argument.
• X̃:1 (UI) ≤ UX̃

:
1 (I) for all U ≥ 0 and I ∈ �(0, ').

• X̃1 < +∞, where X̃1 ≥ supI∈� (0,') X̃:1 (I),

and
E

[
X:2 |X

:−1
1,2 , X

:−2
1,2 , ...

]
≤ X̂2.

Theorem 3.22 Let sequences X:1 (G, H) and X
:
2 (: ≥ 0) satisfy 3.7 for all G, H ∈ &.

Then after # steps of Algorithm 2 the following inequality holds:

E 5 (G# ) − 5 (G∗) ≤ min
{

4!'2

#2 , 2!'2 exp
(
−# − 1

2

√
`

!

)}
+ X̃1

+$
(
min

{
#,

√
!

`

}
X̂2

)
.

Proof By 3.16
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1
�#

#−1∑
:=0

�:+1 ≤ $
(
min

{
#,

√
!

`

})
.

By Assumption 3.7 we have

�: X̃
:
1 (G

: − H:+1) = �: X̃:1
(
U:+1
�:
(H:+1 − D: )

)
≤ U:+1X̃:1 (H

:+1 − D: ) ≤ U:+1X̃1.

Finally,

E 5 (G# ) − 5 (G∗) ≤ min
{

4!'2

#2 , 2!'2 exp
(
−# − 1

2

√
`

!

)}
+ 2X̃1 +$

(
min

{
#,

√
!

`

}
X̂2

)
.

3.4 High-Probability Bounds for Stochastic Methods

In this part, we focus on the following problem

min
G∈R=

5 (G), 5 (G) = Eb [ 5 (G, b)] , (3.139)

where 5 (G) is a `-strongly convex or convex but possibly non-smooth function.

Definition 3.1 Differentiable function 5 : & ⊆ R= → R is called `-strongly convex
for some ` ≥ 0 if for all G, H ∈ &

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 + `
2
‖H − G‖22.

When ` = 0 function 5 is called convex.

Next, at each point G ∈ R= there is an access to the unbiased estimator ∇ 5 (G, b) of
∇ 5 (G) such that Eb

[
‖∇ 5 (G, b) − ∇ 5 (G)‖22

]
< ∞ and if additionally G ∈ & ⊆ R=,

then

Eb [∇ 5 (G, b)] = ∇ 5 (G), Eb
[
‖∇ 5 (G, b) − ∇ 5 (G)‖22

]
≤ f2, f > 0. (3.140)

& is the ball centered at the solution G∗ of (3.139) with radius ∼ '0 ≥ ‖G0 − G∗‖2,
where G0 is a starting point of themethod. Function 5 has (a, "a)-Hölder continuous
gradients on a compact set & ⊆ R= for some a ∈ [0, 1], "a > 0 meaning that

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ "a ‖G − H‖a2 ∀G, H ∈ &. (3.141)

When a = 1 inequality (3.141) implies "1-smoothness of 5 , and when a = 0 it
means∇ 5 (G) has bounded variationwhich is equivalent to being uniformly bounded.
Moreover, when a = 0 differentiability of 5 is not needed: one can assume uniform
boundedness of the subgradients of 5 throughout the proofs. When (3.141) holds for
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a = 0 and a = 1 simultaneously then it holds for all a ∈ [0, 1] with "a ≤ "1−a
0 "a

1 .
It is sufficient to assume that the set & is the ball centered at the solution G∗ of
(3.139) with radius ∼ '0 ≥ ‖G0 − G∗‖2, where G0 is a starting point of the method,
i.e., analysis in this part does not require (3.141) to hold on R=.

In this chapter ”gradient” is used, though the entire analysis below works for
non-differentiable convex functions as well (when a = 0): one just needs to replace
gradients by subgradients. This remark is valid for Definition 3.1 as well.

High-Probability Bounds

All analysis in this part of the book are presented in terms of high-probability
bounds. For a given accuracy Y > 0 and confidence level V ∈ (0, 1) the goal is to
find Y-solutions of problem (3.139) with probability at least 1 − V, i.e., such Ĝ that
P{ 5 (Ĝ) − 5 (G∗) ≤ Y} ≥ 1 − V. For brevity, such (in general, random) points Ĝ are
called as (Y, V)-solution of (3.139). Moreover, by high-probability iteration/oracle
complexity of a stochasticmethodM it means a sufficient number of iterations/oracle
calls (number of ∇ 5 (G, b) computations) needed to guarantee that M returns an
(Y, V)-solution of (3.139).

Gradient clipping

In this chapter, we will need the concept of gradient clipping. The methods based on
gradient clipping and normalization are popular in different machine learning and
deep learning tasks due to their robustness in practice to the noise in the stochastic
gradients and rapid changes of the objective function. We consider methods such
as clipped-SGD and clipped-SSTM. These methods are based on the clipping of the
stochastic gradients:

clip(∇ 5 (G, /), _) = min
{
1,

_

‖∇ 5 (G, /)‖2

}
∇ 5 (G, /) (3.142)

where ∇ 5 (G, /) = 1
<

∑<
8=1 ∇ 5 (G, b8) is a mini-batched stochastic gradient. Gradient

clipping ensures that the resulting vector has a norm bounded by the clipping level _.
Since the clipped stochastic gradient cannot have arbitrary large norm, the clipping
helps to avoid unstable behavior of the method when the noise is heavy-tailed and
the clipping level _ is properly adjusted.

3.4.1 Clipped Stochastic Gradient Descent

The first method we are considering is Clipped Stochastic Gradient Descent (clipped-
SGD).
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Algorithm 3 Clipped Stochastic Gradient Descent (clipped-SGD): case a ∈ [0, 1]
Input: starting point G0, number of iterations # , batchsize <, stepsize W, clipping parameter

� > 0.
1: for : = 0, . . . , # − 1 do
2: Draw mini-batch of < fresh i.i.d. samples b :1 , . . . , b

:
< and compute ∇ 5 (G:+1, /: ) =

1
<

∑<
8=1 ∇ 5 (G:+1, b :8 )

3: Compute ∇̃ 5 (G: , /: ) = clip(∇ 5 (G: , /: ) , _) using (3.142) with _ = �/W
4: G:+1 = G: − W ∇̃ 5 (G: , /: )
5: end for
Output: Ḡ# = 1

#

∑#−1
:=0 G

:

Convex Case

Theorem 3.23 Assume that function 5 is convex, achieves its minimum at a point G∗,
and its stochastic gradient and its gradient satisfy (3.140) and (3.141) respectively
with f > 0, a ∈ [0, 1], "a > 0 on & = �7'0 (G∗), where '0 ≥ ‖G0 − G∗‖2. Then, for
all V ∈ (0, 1) and # such that

ln
4#
V
≥ 2, (3.143)

we have that after # iterations of clipped-SGD with

_ =
'0

W ln 4#
V

, < ≥ max

{
1,

81#f2

_2 ln 4#
V

}
(3.144)

and stepsize

W ≤ min

{
Y

1−a
1+a

8"
2

1+a
a

,
'0

√
2#Y a

1+a"
1

1+a
a

,
'1−a

0

2�a"a ln 4#
V

}
, (3.145)

with probability at least 1 − V it holds that

5 (Ḡ# ) − 5 (G∗) ≤
�2'2

0
W#

, (3.146)

where Ḡ# = 1
#

∑#−1
:=0 G: and

� = 7. (3.147)

In other words, clipped-SGD with W = min

{
Y

1−a
1+a

8"
2

1+a
a

,
'0

√
2# Y

a
1+a "

1
1+a
a

,
'1−a

0
2�a"a ln 4#

V

}
achieves 5 (Ḡ# )− 5 (G∗) ≤ Ywith probability at least 1−V afterO

(
max

{
"

2
1+a
a '2

0

Y
2

1+a
,
"a'

1+a
0
Y

ln "a'
1+a
0

YV

})
iterations and requires
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O ©«max

"

2
1+a
a '2

0

Y
2

1+a
,max

{
"a'

1+a
0
Y

,
f2'2

0
Y2

}
ln
"a'

1+a
0

YV

ª®¬ (3.148)

oracle calls.

Proof Since 5 (G) is convex and its gradients satisfy (3.141), we get the following
inequality under assumption that G: ∈ �7'0 (G∗):

‖G:+1 − G∗‖22 = ‖G: − W∇̃ 5 (G: , /: ) − G∗‖22
= ‖G: − G∗‖22 + W

2‖∇̃ 5 (G: , /: )‖22 − 2W
〈
G: − G∗, ∇̃ 5 (G: , /: )

〉
= ‖G: − G∗‖22 + W

2‖∇ 5 (G: ) + \: ‖22 − 2W
〈
G: − G∗,∇ 5 (G: ) + \:

〉
(3.165)
≤ ‖G: − G∗‖22 + 2W2‖∇ 5 (G: )‖22 + 2W2‖\: ‖22 − 2W

〈
G: − G∗,∇ 5 (G: ) + \:

〉
(3.174)
≤ ‖G: − G∗‖22 − 2W

(
1 − 2W

(
1
Y

) 1−a
1+a

"
2

1+a
a

) (
5 (G: ) − 5 (G∗)

)
+ 2W2‖\: ‖22

−2W
〈
G: − G∗, \:

〉
+ 2W2Y

2a
1+a"

2
1+a
a ,

where \: = ∇̃ 5 (G: , /: ) − ∇ 5 (G: ) and the last inequality follows from the convexity
of 5 . Using notation ':

def
= ‖G: − G∗‖2, : > 0 we derive that for all : ≥ 0

'2
:+1 ≤ '

2
: − 2W

(
1 − 2W

(
1
Y

) 1−a
1+a

"
2

1+a
a

) (
5 (G: ) − 5 (G∗)

)
+ 2W2‖\: ‖22

−2W
〈
G: − G∗, \:

〉
+ 2W2Y

2a
1+a"

2
1+a
a

under assumption that G: ∈ �7'0 (G∗). Let us define � = 2W
(
1 − 2W

(
1
Y

) 1−a
1+a

"
2

1+a
a

)
(3.145)
≥

W > 0, then

�

(
5 (G: ) − 5 (G∗)

)
≤ '2

: − '
2
:+1 + 2W2‖\: ‖22 − 2W

〈
G: − G∗, \:

〉
+ 2W2Y

2a
1+a"

2
1+a
a

under assumption that G: ∈ �7'0 (G∗). Summing up these inequalities for : =

0, . . . , # − 1, we obtain
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�

#

#−1∑
:=0

[
5 (G: ) − 5 (G∗)

]
≤ 1
#

#−1∑
:=0

(
'2
: − '

2
:+1

)
+ 2W2Y

2a
1+a"

2
1+a
a + 2W2

#

#−1∑
:=0
‖\: ‖22

−2W
#

#−1∑
:=0

〈
G: − G∗, \:

〉
=

1
#

(
'2

0 − '
2
#

)
+ 2W2Y

2a
1+a"

2
1+a
a + 2W2

#

#−1∑
:=0
‖\: ‖22

−2W
#

#−1∑
:=0

〈
G: − G∗, \:

〉
under assumption that G: ∈ �7'0 (G∗). Noticing that for Ḡ# = 1

#

#−1∑
:=0

G: Jensen’s

inequality gives 5 (Ḡ# ) = 5

(
1
#

#−1∑
:=0

G:
)
≤ 1

#

#−1∑
:=0

5 (G: ), we have

�#

(
5 (Ḡ# ) − 5 (G∗)

)
≤ '2

0 − '
2
# + 2W2#Y

2a
1+a"

2
1+a
a + 2W2

#−1∑
:=0
‖\: ‖22

−2W
#−1∑
:=0

〈
G: − G∗, \:

〉
(3.149)

under assumption that G: ∈ �7'0 (G∗) for : = 0, 1, . . . , # − 1. Taking into account
that 5 (Ḡ# ) − 5 (G∗) ≥ 0 and changing the indices we get that for all : = 0, 1, . . . , #

'2
: ≤ '

2
0 + 2W2:Y

2a
1+a"

2
1+a
a + 2W2

:−1∑
;=0
‖\; ‖22 − 2W

:−1∑
;=0

〈
G; − G∗, \:

〉
. (3.150)

under assumption that G; ∈ �7'0 (G∗) for ; = 0, 1, . . . , : − 1. The remaining part of
the proof is based on the analysis of inequality (3.150). In particular, via induction
we prove that for all : = 0, 1, . . . , # with probability at least 1 − :V

#
the following

statement holds: inequalities

'2
C

(3.150)
≤ '2

0 + 2W2CY
2a

1+a"
2

1+a
a + 2W2

C−1∑
;=0
‖\: ‖22 − 2W

C−1∑
;=0

〈
G: − G∗, \:

〉
≤ �2'2

0 (3.151)

hold for C = 0, 1, . . . , : simultaneously where � is defined in (3.147). Let us define
the probability event when this statement holds as �: . Then, our goal is to show that
P{�: } ≥ 1 − :V

#
for all : = 0, 1, . . . , # . For C = 0 inequality (3.151) holds with

probability 1 since � ≥ 1. Next, assume that for some : = ) − 1 ≤ # − 1 we have
P{�: } = P{�) −1} ≥ 1 − () −1)V

#
. Let us prove that P{�) } ≥ 1 − ) V

#
. First of all,
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probability event �) −1 implies that GC ∈ �7'0 (G∗) for C = 0, 1, . . . , ) − 1, and, as a
consequence, (3.150) holds for : = ) . Since ∇ 5 (G) is (a, "a)-Hölder continuous
on �7'0 (G∗), we have that probability event �) −1 implies∇ 5 (GC )2

(??)
≤ "a ‖GC − G0‖a ≤ "a�

a'a0
(3.145)
≤ _

2
(3.152)

for C = 0, . . . , ) − 1. Next, we introduce new random variables:

[; =

{
G∗ − G; , if ‖G∗ − G; ‖2 ≤ �'0,

0, otherwise,
(3.153)

for ; = 0, 1, . . . ) − 1. Note that these random variables are bounded with probability
1, i.e. with probability 1 we have

‖[; ‖2 ≤ �'0. (3.154)

Using the introduced notation, we obtain that �) −1 implies

'2
)

(3.144),(3.145),(3.150),(3.151),(3.153)
≤ 2'2

0 + 2W
) −1∑
;=0
〈\; , [;〉 + 2W2

) −1∑
;=0
‖\; ‖22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see
Lemma 3.19) and obtain that �) −1 implies

'2
)

(3.165)
≤ 2'2

0 + 2W
) −1∑
;=0

〈
\D; , [;

〉
︸            ︷︷            ︸

¬

+ 2W
) −1∑
;=0

〈
\1; , [;

〉
︸            ︷︷            ︸



+ 4W2
) −1∑
;=0

(
‖\D; ‖

2
2 − E/;

[
‖\D; ‖

2
2
] )

︸                                   ︷︷                                   ︸
®

+ 4W2
) −1∑
;=0
E/;

[
‖\D; ‖

2
2
]

︸                   ︷︷                   ︸
¯

+ 4W2
) −1∑
;=0
‖\1; ‖

2
2︸           ︷︷           ︸

°

, (3.155)

where we introduce new notations:

\D;
def
= ∇̃ 5 (G; , /;) − E/;

[
∇̃ 5 (G; , /;)

]
, \1;

def
= E/;

[
∇̃ 5 (G; , /;)

]
− ∇ 5 (G;), (3.156)

\; = \
D
; + \

1
; .

It remains to provide tight upper bounds for ¬, , ®, ¯ and °, i.e. in the remaining
part of the proof we show that ¬ + +® +¯ +° ≤ X�2'2

0 for some X < 1.
Upper bound for ¬. First of all, since E/; [\D; ] = 0 summands in ¬ are condi-

tionally unbiased:
E/;

[
2W

〈
\D; , [;

〉]
= 0.

Secondly, these summands are bounded with probability 1:
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\D; , [;

〉�� ≤ 2W‖\D; ‖2 ‖[; ‖2
(3.169),(3.154)
≤ 4W_�'0.

Finally, one can bound conditional variances f2
;

def
= E/;

[
4W2 〈

\D
;
, [;

〉2
]
in the fol-

lowing way:

f2
; ≤ E/;

[
4W2 \D; 2

2 ‖[; ‖
2
2

] (3.154)
≤ 4W2 (�'0)2E/;

[\D; 2
2

]
,

i.e., f2
;
is finite due to finiteness of ‖\D

;+1‖2 (see Lemma 3.18). In other words, se-
quence

{
2W

〈
\D
;
, [;

〉}
;≥0 is a bounded martingale difference sequence with bounded

conditional variances {f2
;
};≥0. Therefore, we can apply Bernstein’s inequality, i.e.,

we apply Lemma 3.19 with -; = 2W
〈
\D
;
, [;

〉
, 2 = 4W_�'0 and � =

22 ln 4#
V

6 and get
that for all 1 > 0

P

{�����) −1∑
;=0

-;

����� > 1 and ) −1∑
;=0

f2
; ≤ �

}
≤ 2 exp

(
− 12

2� + 221/3

)
or, equivalently, with probability at least 1 − 2 exp

(
− 12

2�+221/3

)
either

) −1∑
;=0

f2
; > � or

�����) −1∑
;=0

-;

�����︸  ︷︷  ︸
|¬ |

≤ 1.

The choice of � will be clarified further, let us now choose 1 in such a way that
2 exp

(
− 12

2�+221/3

)
=

V

2# . This implies that 1 is the positive root of the quadratic
equation

12 −
22 ln 4#

V

3
1 − 2� ln

4#
V
= 0,

hence

1 =
2 ln 4#

V

3
+

√
22 ln2 4#

V

9
+ 2� ln

4#
V
=
2 ln 4#

V

3
+

√
422 ln2 4#

V

9

= 2 ln
4#
V
= 4W_�'0 ln

4#
V
.

That is, with probability at least 1 − V

2#

either
) −1∑
;=0

f2
; > � or |¬| ≤ 4W_�'0 ln

4#
V︸                                                         ︷︷                                                         ︸

probability event �¬

.
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Here and below, we notice that the conditions of Lemma 3.18 hold when �) −1 holds,
since event �) −1 implies that G0, G1, . . . , G) lie in �7'0 (G∗). Therefore, probability
event �) −1 implies that

) −1∑
;=0

f2
; ≤ 4W2 (�'0)2

) −1∑
;=0
E/;

[
‖\D; ‖

2
2
] (3.172)
≤ 72W2 (�'0)2f2 )

<

) ≤#
≤ 72W2 (�'0)2f2 #

<
≤
22 ln 4#

V

6
= �,

where the last inequality follows from 2 = 4W_�'0 and simple arithmetic.
Upper bound for . First of all, we notice that probability event �) −1 implies

2W
〈
\1; , [;

〉
≤ 2W

\1; 2 ‖[; ‖2
(3.170),(3.154)
≤ 2W

4f2

<_
�'0 =

8Wf2�'0
<_

.

This implies that

 = 2W
) −1∑
;=0

〈
\1; , [;

〉 ) ≤#
≤ 8Wf2�'0#

<_

(3.144)
≤ 8

81
_W�'0 ln

4#
V
.

Upper bound for ®.We derive the upper bound for ® using the same technique
as for ¬. First of all, we notice that the summands in ® are conditionally unbiased:

E/;
[
4W2

(
‖\D; ‖

2
2 − E/;

[
‖\D; ‖

2
2
] )]

= 0.

Secondly, the summands are bounded with probability 1:���4W2
(
‖\D; ‖

2
2 − E/;

[
‖\D; ‖

2
2
] )��� ≤ 4W2

(
‖\D; ‖

2
2 + E/;

[
‖\D; ‖

2
2
] ) (3.169)
≤ 4W2

(
4_2 + 4_2

)
= 32W2_2 def

= 21. (3.157)

Finally, one can bound conditional variances f̂2
;

def
= E/;

[���4W2
(
‖\D
;
‖22 − E/;

[
‖\D
;
‖22

] )���2]
in the following way:

f̂2
;

(3.157)
≤ 21E/;

[���4W2
(
‖\D; ‖

2
2 − E/;

[
‖\D; ‖

2
2
] )���]

≤ 4W221E/;
[
‖\D; ‖

2
2 + E/;

[
‖\D; ‖

2
2
] ]
= 8W221E/;

[
‖\D; ‖

2
2
]
, (3.158)

i.e., f̂2
;
is finite due to finiteness of ‖\D

;+1‖2 (see Lemma 3.18) In other words,
sequence

{
4W2

(
‖\D
;
‖22 − E/;

[
‖\D
;
‖22

] )}
;≥0

is a bounded martingale difference se-

quence with bounded conditional variances {f̂2
;
};≥0. Therefore, we can apply Bern-

stein’s inequality, i.e.we applyLemma3.19with -; = -̂; = 4W2
(
‖\D
;
‖22 − E/;

[
‖\D
;
‖22

] )
,
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2 = 21 = 32W2_2 and � = �1 =
22

1 ln 4#
V

18 and get that for all 1 > 0

P

{�����) −1∑
;=0

-̂;

����� > 1 and ) −1∑
;=0

f̂2
; ≤ �1

}
≤ 2 exp

(
− 12

2�1 + 2211/3

)
or, equivalently, with probability at least 1 − 2 exp

(
− 12

2�1+2211/3

)
either

) −1∑
;=0

f̂2
; > �1 or

�����) −1∑
;=0

-̂;

�����︸  ︷︷  ︸
|® |

≤ 1.

As in our derivations of the upper bound for¬wechoose such 1 that2 exp
(
− 12

2�1+2211/3

)
=

V

2# , i.e.,

1 =
21 ln 4#

V

3
+

√
22

1 ln2 4#
V

9
+ 2�1 ln

4#
V
≤ 21 ln

4#
V
= 32W2_2 ln

4#
V
.

That is, with probability at least 1 − V

2#

either
) −1∑
;=0

f̂2
; > �1 or |®| ≤ 32W2_2 ln

4#
V︸                                                         ︷︷                                                         ︸

probability event �®

.

Next, we notice that probability event �) −1 implies that

) −1∑
;=0

f̂2
;

(3.158)
≤ 8W221

) −1∑
;=0
E/;

[\D; 2
2

] (3.172)
≤ 144W221f

2 )

<

) ≤#
≤ 144W221f

2 #

<
=
22

1 ln 4#
V

18
≤ �1.

Upper bound for ¯. The probability event �) −1 implies

¯ = 4W2
) −1∑
;=0
E/;

[
‖\D; ‖

2
2
] (3.172)
≤ 72W2f2

) −1∑
;=0

1
<

) ≤#
≤ 72W2#f2

<

(3.144)
≤ 8

9
_2W2 ln

4#
V
.

Upper bound for °. Again, we use corollaries of probability event �) −1:

° = 4W2
) −1∑
;=0
‖\1; ‖

2
2
(3.170)
≤ 64W2f4 )

<2_2
) ≤#
≤ 64W2f4 #

<2_2

(3.144)
≤ 64

6561
_2W2 ln2 4#

V

#
.
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Now we summarize all bound that we have: probability event �) −1 implies

'2
)

(3.150)
≤ 2'2

0 + 2W2
) −1∑
;=0
‖\; ‖22 − 2W

) −1∑
;=0

〈
G; − G∗, \;

〉
(3.155)
≤ 2'2

0 +¬ + +® +¯ +°,

 ≤ 8
81
_W�'0 ln

4#
V
, ¯ ≤ 8

9
_2W2 ln

4#
V
, ° ≤ 64

6561
_2W2 ln2 4#

V

#
,

) −1∑
;=0

f2
; ≤ �,

) −1∑
;=0

f̂2
; ≤ �1

and

P{�) −1} ≥ 1 − () − 1)V
#

, P{�¬} ≥ 1 − V

2#
, P{�®} ≥ 1 − V

2#
,

where

�¬ =

{
either

) −1∑
;=0

f2
; > � or |¬| ≤ 4W_�'0 ln

4#
V

}
,

�® =

{
either

) −1∑
;=0

f̂2
; > �1 or |®| ≤ 32W2_2 ln

4#
V

}
.

Taking into account these inequalities and our assumptions on _ and W (see (3.144)
and (3.145)) we get that probability event �) −1 ∩ �¬ ∩ �® implies

'2
)

(3.150)
≤ 2'2

0 + 2W2
) −1∑
;=0
‖\; ‖22 − 2W

) −1∑
;=0

〈
G; − G∗, \;

〉
≤ 2'2

0 +
(

4
7
+ 8

567
+ 16

49
+ 4

441
+ 64

321489

)
�2'2

0
(3.147)
≤ �2'2

0 .(3.159)

Moreover, using union bound we derive

P {�) −1 ∩ �¬ ∩ �®} = 1 − P
{
�) −1 ∪ �¬ ∪ �®

}
≥ 1 − )V

#
. (3.160)

That is, by definition of �) and �) −1 we have proved that

P{�) }
(3.159)
≥ P {�) −1 ∩ �¬ ∩ �®}

(3.160)
≥ 1 − )V

#
,

which implies that for all : = 0, 1, . . . , # we have P{�: } ≥ 1− :V

#
. Then, for : = #

we have that with probability at least 1 − V
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�#

(
5 (Ḡ# ) − 5 (G∗)

) (3.149)
≤ 2'2

0 + 2W2
#−1∑
:=0
‖\: ‖22 − 2W

#−1∑
:=0

〈
G: − G∗, \:

〉 (3.151)
≤ �2'2

0 .

Since � = 2W
(
1 − 2W

(
1
Y

) 1−a
1+a

"
2

1+a
a

)
(3.145)
≥ W we get that with probability at least

1 − V

5 (Ḡ# ) − 5 (G∗) ≤
�2'2

0
�#

=
�2'2

0
W#

.

When

W = min

{
Y

1−a
1+a

8"
2

1+a
a

,
'0

√
2#Y a

1+a"
1

1+a
a

,
'1−a

0

2�a"a ln 4#
V

}
we have that with probability at least 1 − V

5 (Ḡ# ) − 5 (G∗) ≤ max


8�2"
2

1+a
a '2

0

Y
1−a
1+a #

,

√
2�2"

1
1+a
a '0Y

a
1+a

√
#

,
2�2+a"a'

1+a
0 ln 4#

V

#

 .
Next, we estimate the iteration and oracle complexities of the method and consider
3 possible situations.

1. If W = Y
1−a
1+a

8"
2

1+a
a

, then with probability at least 1 − V

5 (Ḡ# ) − 5 (G∗) ≤
8�2"

2
1+a
a '2

0

Y
1−a
1+a #

.

In other words, clipped-SGD achieves 5 (Ḡ# ) − 5 (G∗) ≤ Y with probability at
least 1 − V after

O ©«
"

2
1+a
a '2

0

Y
2

1+a

ª®¬
iterations and requires

#<
(3.144)
= O

(
max

{
#,
#2f2W2 ln #

V

'2
0

})
= O ©«max

#,
#2Y

2(1−a)
1+a f2 ln #

V

"
4

1+a
a '2

0

ª®¬
= O ©«max


"

2
1+a
a '2

0

Y
2

1+a
,
f2'2

0
Y2 ln

"
2

1+a
a '2

0

Y
2

1+a V

ª®¬
oracle calls.

2. If W = '0
√

2# Y
a

1+a "
1

1+a
a

, then with probability at least 1 − V



3.4 High-Probability Bounds for Stochastic Methods 149

5 (Ḡ# ) − 5 (G∗) ≤
√

2�2"
1

1+a
a '0Y

a
1+a

√
#

.

In other words, clipped-SGD achieves 5 (Ḡ# ) − 5 (G∗) ≤ Y with probability at
least 1 − V after

O ©«
"

2
1+a
a '2

0

Y
2

1+a

ª®¬
iterations and requires

#<
(3.144)
= O

(
max

{
#,
#2f2W2 ln #

V

'2
0

})
= O

(
max

{
#,
#f2 ln #

V

Y
2a

1+a"
2

1+a
a

})

= O ©«max

"

2
1+a
a '2

0

Y
2

1+a
,
f2'2

0
Y2 ln

"
2

1+a
a '2

0

Y
2

1+a V

ª®¬
oracle calls.

3. If W = '1−a
0

2�a"a ln 4#
V

, then with probability at least 1 − V

5 (Ḡ# ) − 5 (G∗) ≤
2�2+a"a'

1+a
0 ln 4#

V

#
.

In other words, clipped-SGD achieves 5 (Ḡ# ) − 5 (G∗) ≤ Y with probability at
least 1 − V after

O
©«
"a'

1+a
0 ln "a'

1+a
0

YV

Y

ª®®¬
iterations and requires

#<
(3.144)
= O

(
max

{
#,
#2f2W2 ln #

V

'2
0

})
= O

(
max

{
#,

#2f2

"2
a'

2a
0 ln #

V

})
= O

(
max

{
"a'

1+a
0
Y

,
f2'2

0
Y2

}
ln
"a'

1+a
0

YV

)
oracle calls.

Putting all together and noticing that ln "
2

1+a
a '2

0

Y
2

1+a V
= O

(
ln "a'

1+a
0

YV

)
we get the desired

result. �

It is possible to get rid of using large batchsizes without sacrificing the oracle
complexity via a proper choice of W.
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Corollary 3.7 Let the assumptions of Theorem 3.23 hold and

W = min


Y

1−a
1+a

8"
2

1+a
a

,
'0

√
2#Y a

1+a"
1

1+a
a

,
'1−a

0

2�a"a ln 4#
V

,
'0

9f
√
# ln 4#

V

 . (3.161)

Then for all : = 0, 1, . . . , #−1 one can use< = 1 and to achieve 5 (Ḡ# )− 5 (G∗) ≤ Y
with probability at least 1 − V clipped-SGD requires

O ©«max

"

2
1+a
a '2

0

Y
2

1+a
,max

{
"a'

1+a
0
Y

,
f2'2

0
Y2

}
ln

(
"a'

1+a
0

YV
+
f2'2

0
Y2V

)ª®¬ (3.162)

iterations/oracle calls.

Proof First of all, we verify that < = 1 is a valid choice. The only assumption on <
is given in (3.144):

<
(3.144)
≥ max

{
1,

81#f2

_2 ln 4#
V

}
Since W ≤ '0

9f
√
# ln 4#

V

, we have

max

{
1,

81#f2

_2 ln 4#
V

}
(3.144)
= max

{
1,

81W2f2# ln 4#
V

'2
0

}
≤ max

{
1,

'2
0

81f2# ln 4#
V

·
81f2# ln 4#

V

'2
0

}
= 1.

Therefore, for W given in (3.161) one can use < = 1.
Next, if the minimum in (3.161) is attained on any of the first three terms, then

applying the derivations from the end of the proof of Theorem 3.23, we get that the
method requires

O ©«max

"

2
1+a
a '2

0

Y
2

1+a
,max

{
"a'

1+a
0
Y

,
f2'2

0
Y2

}
ln
"a'

1+a
0

YV

ª®¬
iterations/oracle calls to achieve 5 (Ḡ# ) − 5 (G∗) ≤ Y with probability at least 1 − V.
If W = '0

9f
√
# ln 4#

V

, then with probability at least 1 − V

5 (Ḡ# ) − 5 (G∗)
(3.146)
≤

9�2'0f
√

ln 4#
V

√
#

.
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In other words, clipped-SGD achieves 5 (Ḡ# ) − 5 (G∗) ≤ Y with probability at least
1 − V after

O
©«
f2'2

0 ln f2'2
0

Y2V

Y2

ª®®¬
iterations/oracle calls. Putting all together we get the desired result. �

Strongly Convex Case

For the strongly convex problems, we consider restarted version of Algorithm 3
(R-clipped-SGD, see Algorithm 4) and derive high-probability complexity result for
this version.

Algorithm 4 Restarted clipped-SGD (R-clipped-SGD): case a ∈ [0, 1]
Input: starting point G0, number of restarts g, number of steps of clipped-SGD in restarts {#C }gC=1,

batchsizes {<C }g:=1, stepsizes {WC }
g
C=1, clipping parameters {�C }gC=1

1: Ĝ0 = G0

2: for C = 1, . . . , g do
3: Run clipped-SGD (Algorithm 3) for #C iterations with batchsize <C , stepsize WC , clipping

parameter �C , and starting point ĜC−1. Define the output of clipped-SGD by ĜC .
4: end for
Output: Ĝg

Note that due to strong convexity the solution G∗ is unique.

Theorem 3.24 Assume that function 5 is `-strongly convex, its stochastic gradient
and its gradient satisfy (3.140) and (3.141) respectively with f > 0, a ∈ [0, 1],
"a > 0 on & = �7'0 (G∗), where '0 ≥ ‖G0 − G∗‖2. Let Y > 0, V ∈ (0, 1), and for all
C = 1, . . . , g

#C = max


2�4"

2
1+a
a '2

0

2CY
2

1+a
C

,

4�2+a"a'
1+a
0 ln 16�2+a"a'1+a

0

2
(1+a)C

2 YCV

2
(1+a)C

2 YC

 , YC =
`'2

0
2C+1

,

_C =
'0

2 C2 WC ln 4#C g
V

, <C ≥ max

{
1,

81#Cf2

_2
C ln 4#C g

V

}
, ln

4#Cg
V
≥ 2,

WC = min

Y

1−a
1+a
C

8"
2

1+a
a

,
'0

2 C2
√

2#CY
a

1+a
C "

1
1+a
a

,
'1−a

0

21+ (1−a)C2 �a"a ln 4#C g
V

 .
Then R-clipped-SGD achieves 5 (Ḡg) − 5 (G∗) ≤ Y with probability at least 1− V after
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O
(
max

{
�

2
1+a
1 ln

`'2
0

Y
, �

2
1+a
2 ,max

{
�1 ln

`'2
0

Y
, �2

}
ln
�

V

})
iterations of Algorithm 3 in total and requires

O
(
max

{
�

2
1+a
1 ln

`'2
0

Y
, �

2
1+a
2 ,max

{
�1 ln

`'2
0

Y
, �2,

f2

`Y

}
ln
�

V

})
(3.163)

oracle calls, where

�1 =
"a

`'1−a
0

, �2 =
"a

`
1+a

2 Y
1−a

2
, � = �2 ln

`'2
0

Y
.

Proof Applying Theorem 3.23, we obtain that with probability at least 1 − V

g

5 (Ĝ1) − 5 (G∗) ≤
`'2

0
4
.

Since 5 is `-strongly convex we have

`‖Ĝ1 − G∗‖22
2

≤ 5 (Ĝ1) − 5 (G∗).

Therefore, with probability at least 1 − V

g

5 (Ĝ1) − 5 (G∗) ≤
`'2

0
4
, ‖Ĝ1 − G∗‖22 ≤

'2
0

2
.

From mathematical induction and the union bound for probability events it follows
that inequalities

5 (ĜC ) − 5 (G∗) ≤
`'2

0
2C+1

, ‖ĜC − G∗‖22 ≤
'2

0
2C

hold simultaneously for C = 1, . . . , g with probability at least 1 − V. In particular, it
means that after g =

⌈
log2

`'2
0
Y

⌉
− 1 restarts R-clipped-SGD finds an Y-solution with

probability at least 1 − V. The total number of iterations #̂ is
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g∑
C=1

#C = O
©«
g∑
C=1

max

"

2
1+a
a '2

0

2CY
2

1+a
C

,
"a'

1+a
0

2
(1+a)C

2 YC

ln
"a'

1+a
0 g

2
(1+a)C

2 YC V

ª®¬
= O ©«

g∑
C=1

max

"

2
1+a
a · 2

(1−a)C
1+a

`
2

1+a '
2(1−a)

1+a
0

,
"a · 2

(1−a)C
2

`'1−a
0

ln
"a · 2

(1−a)g
2 g

`'1−a
0 V

ª®¬
= O ©«max


"

2
1+a
a

`
2

1+a '
2(1−a)

1+a
0

,
"a

`'1−a
0

ln
"a ln `'2

0
Y

`
1+a

2 Y
1−a

2 V

 ·max
ln

`'2
0

Y
,

(
`'2

0
Y

) 1−a
2 ª®¬

= O
(
max

{
�

2
1+a
1 ln

`'2
0

Y
, �

2
1+a
2 ,max

{
�1 ln

`'2
0

Y
, �2

}
ln
�

V

})
,

where

�1 =
"a

`'1−a
0

, �2 =
"a

`
1+a

2 Y
1−a

2
, � = �2 ln

`'2
0

Y
.

Finally, the total number of oracle calls equals

g∑
C=1

#C−1∑
:=0

<C: = O
(
max

{
g∑
C=1

#C ,

g∑
C=1

f2'2
0

2CY2
C

ln
"a'

1+a
0 g

2
(1+a)C

2 YC V

})
= O

(
max

{
#̂,

g∑
C=1

f2 · 2C

`2'2
0

ln
�

V

})
= O

(
max

{
#̂,
f2

`Y
ln
�

V

})
.

Eduard: we need the analysis of clipped-SGD and clipped-SSTM (for Hölder
continuous gradients).

Useful Inequalities

For all 0, 1 ∈ R= and _ > 0

|〈0, 1〉| ≤
‖0‖22
2_
+
_‖1‖22

2
, (3.164)

‖0 + 1‖22 ≤ 2‖0‖22 + 2‖1‖22, (3.165)

〈0, 1〉 = 1
2

(
‖0 + 1‖22 − ‖0‖

2
2 − ‖1‖

2
2

)
. (3.166)

Auxiliary Lemmas

Lemma 3.17 Let 5 has (a, "a)-Hölder continuous gradient on & ⊆ R=. Then for
all G, H ∈ & and for all X > 0
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5 (H) ≤ 5 (G) + 〈∇ 5 (G), H − G〉 + "a

1 + a ‖G − H‖
1+a
2 , (3.167)

5 (H) ≤ 5 (G) + 〈∇ 5 (G), H − G〉 + ! (X, a)
2
‖G − H‖22 +

X

2
, !(X, a) =

(
1
X

) 1−a
1+a

"
2

1+a
a .

(3.168)

Lemma 3.18 For all : ≥ 0 the following inequality holds:∇̃ 5 (G:+1, /: ) − E/: [
∇̃ 5 (G:+1, /: )

]
2
≤ 2_:+1. (3.169)

Moreover, if the stochastic gradient satisfies (3.140) on & = �3'0 (G∗) and
‖∇ 5 (G:+1)‖2 ≤ _:+1

2 for some : ≥ 0, then for this : we have:E/: [
∇̃ 5 (G:+1, /: )

]
− ∇ 5 (G:+1)


2
≤ 4f2

<:_:+1
, (3.170)

E/:

[∇̃ 5 (G:+1, /: ) − ∇ 5 (G:+1)2

2

]
≤ 18f2

<:
, (3.171)

E/:

[∇̃ 5 (G:+1, /: ) − E/: [
∇̃ 5 (G:+1, /: )

]2

2

]
≤ 18f2

<:
. (3.172)

Lemma 3.19 Let the sequence of random variables {-8}8≥1 form amartingale differ-
ence sequence, i.e. E [-8 | -8−1, . . . , -1] = 0 for all 8 ≥ 1. Assume that conditional
variances f2

8

def
= E

[
-2
8
| -8−1, . . . , -1

]
exist and are bounded and assume also that

there exists deterministic constant 2 > 0 such that ‖-8 ‖2 ≤ 2 almost surely for all
8 ≥ 1. Then for all 1 > 0, � > 0 and = ≥ 1

P

{��� =∑
8=1

-8

��� > 1 and =∑
8=1

f2
8 ≤ �

}
≤ 2 exp

(
− 12

2� + 221/3

)
. (3.173)

Technical Lemmas

Lemma 3.20 Let 5 haveHölder continuous gradients on& ⊆ R= for some a ∈ [0, 1]
with constant "a > 0, be convex and G∗ ∈ & be some minimum of 5 (G) on R=.
Then, for all G ∈ R= and all X > 0,

‖∇ 5 (G)‖22 ≤ 2
(

1
X

) 1−a
1+a

"
2

1+a
a ( 5 (G) − 5 (G∗)) + X 2a

1+a"
2

1+a
a . (3.174)

Proof For a given X > 0 we consider an arbitrary point G ∈ & and H = G −
1

! (X,a)∇ 5 (G), where ! (X, a) =
(

1
X

) 1−a
1+a

"
2

1+a
a . Since G∗ ∈ & and 5 is convex one can

easily show that H ∈ &. For the pair of points G, H we apply (3.168) and get
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5 (H) ≤ 5 (G) + 〈∇ 5 (G), H − G〉 + ! (X, a)
2
‖G − H‖22 +

X

2

= 5 (G) − 1
2! (X, a) ‖G − H‖

2
2 +

X

2

implying

‖∇ 5 (G)‖22 ≤ 2! (X, a) ( 5 (G) − 5 (H)) + X! (X, a)

≤ 2
(

1
X

) 1−a
1+a

"
2

1+a
a ( 5 (G) − 5 (G∗)) + X 2a

1+a"
2

1+a
a .

3.5 Historical Notes

SGD was proposed in the seminal work [103]. The analysis of SGD under Assump-
tion 3.1 was developed in [?].

I suggest to write here just short sentences to acknowledge who proposed the
method/analysis/idea that we mention in the chapter.

Eduard: don’t forget to mention recent advances for over-parameterized modeld
(line searches, Polyak stepsizes)





Chapter 4
Adaptive Methods for Stochastic optimization
Problems and Stochastic Variational Inequalities

Abstract TODO
TODO: write a short introduction

4.1 AdaGrad non-smooth case

Step size adaptivity is a most interesting type of adaptivity since stochastic gradient
descent for stochastic approximation approach to stochastic optimization is very
sensitive to the choice of step size schedule. For example, asymptotically optimal
step size schedule W: ∼ :−1 is known to be impractical, while step sizes W: ∼ :−1/2

proposed by Polyak and Juditsky, together with averaging, allows one to achieve
much better performance. In the non-smooth convex case, these algorithms match
unimprovable $ (:−1/2) convergence rate. Further improvements will address more
advanced trajectory-dependent step size schedules.

Note, that mentioned asymptotic optimal step size schedule, more precisely, is
W: = ∇2 5 (G∗) · :−1/2 and is of the matrix form, unlike standard ones. AdaGrad (and
its versions) we consider in this section is based on the idea of variable matrix step
size or, more generally, variable metric.

Let’s move on to the description of gradient method in variable metric setting. Its
iteration is

G:+1 = min
G∈&

{
〈6: , G〉 + 1

2
〈G, �:G〉

}
(4.1)

Theorem 4.1 For the algorithm with iteration (4.1), it holds that

E

[
#∑
:=0
( 5 (G: ) − 5 (G∗))

]
≤ 1

2
‖G0 − G∗‖2�0

+ 1
2
E

[
#∑
:=0
‖6: ‖2

�−1
:

]
(4.2)

+ 1
2
E

[
#−1∑
:=0
(‖G:+1 − G∗‖2�:+1 − ‖G

:+1 − G∗‖2�: )
]
.

157
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Proof Projection is non-expansive, so

1
2
‖G:+1 − G∗‖2�: ≤

1
2
‖G: − �−1

: 6
: − G∗‖2�: (4.3)

=
1
2
‖G: − G∗‖2�: − 〈6

: , G: − G∗〉 + 1
2
‖6: ‖2

�−1
:

.

By convexity,

1
2
E

[
‖G:+1 − G∗‖2�:

]
= E

[
1
2
‖G: − G∗‖2�: − ( 5 (G

: ) − 5 (G∗)) + 1
2
‖6: ‖2

�−1
:

]
. (4.4)

Rearranging,

E
[
5 (G: ) − 5 (G∗)

]
=

1
2
E

[
‖G: − G∗‖2�: − ‖G

:+1 − G∗‖2�: + ‖6
: ‖2
�−1
:

]
. (4.5)

Summing up from : = 1 to # finishes the proof. �

Motivation of AdaGrad is to lower the second term in (4.2) by a proper choice of
�: . Let’s consider such an optimization problem:

min
(

#∑
:=0
〈6: , (−16:〉, (4.6)

such that ( ∈ R=×= is positive-definite and Tr(() ≤ 2. This problem can be solved
using Lagrange multipliers method, and the solution is ( = 2�−1/2

#
/Tr(�−1/2

#
) with

�# =
∑#
:=0 6

:6:
>. Iteration of AdaGrad is, therefore, (4.1) with �: = �1/2

:
. This

leads to the following convergence guarantees.

Theorem 4.2 For the AdaGrad, it holds that

E

[
#∑
:=0
( 5 (G: ) − 5 (G∗))

]
≤ !

2
‖G0 − G∗‖22 + E

[
Tr(�1/2

#
)
]

(4.7)

+ 1
2
E

[
max

:=1,...,#
‖G: − G∗‖22 · Tr(�1/2

#
)
]
,

where ! ≥ 0 is such that max:=1,...,# ‖6: ‖2 ≤ !.

Proof Tr(�) ≥ _max (�) for positive-definite � ∈ R=×=, so

‖G:+1 − G∗‖2
�

1/2
:+1
− ‖G:+1 − G∗‖2

�
1/2
:

(4.8)

= 〈G:+1 − G∗, (�1/2
:+1 − �

1/2
:
) (G:+1 − G∗)〉

≤ ‖G:+1 − G∗‖22 · Tr(�1/2
:+1 − �

1/2
:
).

On the other hand,
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#−1∑
:=0
‖G:+1 − G∗‖22 · Tr(�1/2

:+1 − �
1/2
:
) (4.9)

≤ max
:=1,...,#

‖G: − G∗‖22 · Tr(�1/2
#
) − ‖G0 − G∗‖22 · Tr(�1/2

0 ).

Further, let’s demonstrate that

#∑
:=0
〈6: , �−1/2

:
6:〉 ≤ 2

#∑
:=0
〈6: , �−1/2

#
6:〉 = 2Tr(�−1/2

#
), (4.10)

by induction. The base case is

〈60, �
−1/2
0 60〉 = 〈6

0, 60〉
‖60‖2

≤ 2‖60‖2. (4.11)

Induction assumption for # − 1 implies

#∑
:=0
〈6: , �−1/2

:
6:〉 ≤ 2

#−1∑
:=0
〈6: , �−1/2

#−16
:〉 + 〈6# , �−1/2

#
6# 〉 (4.12)

= 2Tr

(
�
−1/2
#−1 ·

#−1∑
:=0

6:6:
>
)
+ 〈6# , �−1/2

#
6# 〉

= 2Tr(�−1/2
#−1�#−1) + 〈6# , �−1/2

#
6# 〉.

Using (without proof) the relation

2Tr((� − 66>)1/2) ≤ 2Tr(�−1/2) − Tr(�−1/266>), (4.13)

� is positive-definite, for � = �# , 6 = 6# , we proof the statement for # and for all
# ≥ 1.

Finally, ‖G0 − G∗‖2
�0
≤ ‖G0 − G∗‖22 ·Tr(�1/2

0 ). Combining it with (4.9), (4.10) and
Theorem 4.2 finishes the proof. �

This version of AdaGrad is full-matrix which may be computationally expensive.
Very practical and wide-spread version of AdaGrad uses diagonal matrices�: . More
precisely, instead of optimization problem (4.6) defining �: , we consider such one:

min
B

#∑
:=0

=∑
8=1

[6: ]2
8

B8
, (4.14)

such that 〈B, 1〉 ≤ 2, B8 ≥ 0 for all 8 = 1, ..., =. The solution for this problem is
B8 =

√∑#
:=0 [6: ]28 . So, we can use �: = (B). This leads to the following

Corollary 4.1 For the AdaGrad with diagonal adaptation, it holds that
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E

[
#∑
:=0
( 5 (G: ) − 5 (G∗))

]
≤ !

2
‖G0 − G∗‖22 + E


=∑
8=1

√√√
#∑
:=0
[6: ]2

8

 (4.15)

+ 1
2
E

 max
:=1,...,#

‖G: − G∗‖22 ·
=∑
8=1

√√√
#∑
:=0
[6: ]2

8

 ,
where ! ≥ 0 is such that max:=1,...,# ‖6: ‖2 ≤ !.

To understand this convergence rate, let’s bound gradient term:

=∑
8=1

√√√
#∑
:=0
[6: ]2

8
≤

√√√
=

#∑
:=0
‖6: ‖2 ≤ !

√
=#. (4.16)

Therefore, asymptotic convergence rate of AdaGrad is $ (1/
√
#), the same as for

SGD. On the other hand, former gradient term depending on ‖6: ‖�−1
:

in AdaGrad
reaches its minimum. More precisely,

4.2 Adam smooth case

TODO

4.3 Universal stochastic Mirror-Prox for variational inequalities

Let & be convex subset of R=, � : & −→ R= be a monotone operator, i.e.

〈� (G) − � (H), G − H〉 ≥ 0, ∀G, H ∈ &.

We focus on the stochastic setting of the problem of finding a vector G∗ ∈ & (called
a strong solution), such that

〈� (G∗), G∗ − G〉 ≤ 0, ∀G ∈ &. (4.17)

This means that we have an access to an unbiased noisy estimate of the exact
monotone mapping � (G). That is, we have an access to an oracle �̃ : & −→ R=,
such that for any G ∈ & we have

E[�̃ (G) |G] = � (G).

Since � is a monotone operator, a strong solution is also a weak solution, that is
〈� (G), G∗ − G〉 ≤ 0, ∀G ∈ & [?].
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We assume that there exists a bound� on all of unbiased estimates of the operator
�, i.e. ‖�̃ (G)‖∗ ≤ �, ∀G ∈ &, where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Definition 4.1 [9] Let & ⊆ R= be a convex set, and Δ : & ×& −→ R is convex with
respect to its first argument. We say that the function Δ is a gap function (or merit
function) compatible with the monotone operator � : & −→ R=, if

Δ(G, H) ≤ 〈� (G), G − H〉; ∀G, H ∈ &.

The duality gap of Δ is defined as DualGap(G) := max
H∈&

Δ(G, H). We say that G∗ is a

solution of (4.17) if and only if DualGap(G∗) = 0

For the stochastic setting of the problem (4.17), in [9], it was proposed, in the
general set-up of arbitrary norms and compatible Bregman divergences, a universal
algorithm, listed as Algorithm 5 below. This algorithm simultaneously achieves the
optimal rates for the smooth/non-smooth, and noisy/noiseless settings.

Algorithm 5 Universal Stochastic Mirror-Prox [9].
Input: Number of iterations # > 0, a prox-function 3 and the connected Bregmann divergence

+ ( ·, ·) , H0 = argminG∈& 3 (G) , � > 0, s.t. �2 = maxG∈& 3 (G) −minG∈& 3 (G) , �0 > 0.
1: for : = 1, . . . , # do
2: Set "̃: := �̃ (H:−1) , the noisy estimate of ": := � (H:−1) .
3: Calculate

W: =
�√

�2
0 +

∑:−1
8=1 |

2
8

, where |2
8 :=

‖G8 − H8 ‖2 + ‖G8 − H8−1 ‖2

5[2
8

. (4.18)

4: Calculate G: = argmin
G∈&

{
〈"̃: , G 〉 + 1

W:
+ (G, H:−1)

}
.

5: Set 6̃: := �̃ (G: ) , the noisy estimate of 6: := � (G: ) .
6: Calculate H: = argmin

G∈&

{
〈6̃: , G 〉 + 1

W:
+ (G, H:−1)

}
.

7: end for
Output: G# = 1

#

∑#
:=1 G: .

For Algorithm 5, we mention the first results regards the non-smooth noisy case,
in the following theorem
Theorem 4.3 For the output point G# ∈ R=, after # iterations of Algorithm 5, it
holds the following bound

E [DualGap (G# )] := E
[
max
G∈&

Δ (G# , G)
]
≤ $

(
U��

√
log #

√
#

)
, (4.19)

where

� := max
1≤:≤#

{max{‖6: ‖∗, ‖": ‖∗}} , and U := max
{
�

�0
,
�0
�

}
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Proof (Proof Sketch) Assuming that the learning rate sequence {W: }:≥1 is mono-
tonically non-increasing, then for any G ∈ & we have

#∑
:=1

6̃: (G: − G) ≤
�2

W1
+ �

2

[#
+

#∑
:=1

6̃: − "̃:


∗ · ‖G: − H: ‖

− 1
2

#∑
:=1

W−1
:

(
‖G: − H: ‖2 + ‖G: − H:−1‖2

)
,

(4.20)

and (see [9])
#∑
:=1

6̃: (G: − G) ≤ $ (U��
√
# log #). (4.21)

Let we set Z: := 6̃: − 6: . Then we have E[Z: |G: ] = 0 and {Z: }: is a martingale
difference sequence.

From the definition of the output point G# , and using Jensen’s inequality, for any
G ∈ &, we obtain

# · Δ (Ḡ# , G) ≤
#∑
:=1

Δ (G: , G)

≤
#∑
:=1

6: (G: − G)

=

#∑
:=1

6̃: (G: − G) −
#∑
:=1

Z: (G: − G)

≤ $
(
U��

√
# log #

)
−

#∑
:=1

Z: (G: − G) ,

(4.22)

Let G∗ = argmaxG∈& Δ(G# , G), by substituting G = G∗ in (4.22) and taking the
expectation over (4.22), we find

# · E [Δ (Ḡ# , G∗)] ≤ $
(
U��

√
# log #

)
− E

[
#∑
:=1

Z: (G: − G∗)
]

= $

(
U��

√
# log #

)
+ E

[
#∑
:=1

Z:G
∗

]
.

(4.23)

But (see [9])

E

[
#∑
:=1

Z:G
∗

]
≤ $

(
��

√
# log #

)
(4.24)

By combining (4.23) and (4.24) we find the desired estimate (4.19). �

The next theorem regards the smooth noisy case.
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Theorem 4.4 Let � be an !-smooth operator on &, and E
[�̃ (G) − � (G)2

∗ |G
]
≤

f2; ∀G ∈ &. Then for the output point G# ∈ R=, after # iterations of Algorithm 5,
it holds the following bound

E [DualGap (G# )] ≤ $
(
U�� + U2!�2 + !�2 log (!�/�0)

#
+
Uf�

√
log #

√
#

)
.

(4.25)

Proof (Proof Sketch) For 6̃ and "̃ , from [?], we have6̃: − "̃:


∗ · ‖G: − H: ‖ = min

d>0

{
d

2
6̃: − "̃:

2
∗ +

1
2d
‖G: − H: ‖2

}
.

Since � is an !-smooth operator and by taking d = 1
!
, we find6̃: − "̃:


∗ · ‖G: − H: ‖ ≤

!

2
‖G: − H:−1‖2 +

!

2
‖G: − H: ‖2 . (4.26)

Let b: := 6̃: − 6: − ("̃: − ": ). By using (4.26) with triangle inequality we get,6̃: − "̃:


∗ · ‖G: − H: ‖ ≤ ‖b: ‖∗ · ‖G: − H: ‖ +

!

2
‖G: − H:−1‖2 +

!

2
‖G: − H: ‖2 ,

Now, for any G ∈ &, we have

#∑
:=1

6̃: (G: − G) ≤ $
(
U�� + U2!�2 + !�2 log

(
!�

�0

))
+

#∑
:=1
‖b: ‖∗ · ‖G: − H: ‖ .

(4.27)
Let we set Z: := 6̃: − 6: . From the definition of the output point G# , and using

Jensen’s inequality, for G∗ = argmaxG∈& Δ(G# , G), we obtain

# · E [Δ (Ḡ# , G∗)] ≤ E
#∑
:=1

6̃: (G: − G) − E
[
#∑
:=1

Z: (G: − G)
]

≤ $
(
U�� + U2!�2 + !�2 log

(
!�

�0

))
+ E

[
#∑
:=1
‖b: ‖∗ · ‖G: − H: ‖

]
+ E

[
#∑
:=1

Z:G
∗

]
.

(4.28)

But

E

[
#∑
:=1
‖b: ‖∗ · ‖GC − H: ‖

]
≤ 12U�f

√
) (1 + log)), (4.29)

and
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E

[
#∑
:=1

Z:G
∗

]
≤ �

2

√√√
)∑
C=1
E

[
‖Z: ‖2∗

]
≤ �f

√
#. (4.30)

Thus, as a result, we have the following estimate

# · E [Δ (Ḡ# , G∗)] ≤ $
(
U�� + U2!�2 + !�2 log

(
!�

�0

))
+$ (Uf�

√
# log #),

(4.31)
from which we find the desired estimate (4.25). �

4.3.1 Geometry-aware universal Mirror-Prox

In Algorithm 5, the proposed step-size depends on the norm of the past updates at
each iteration. In [?] it was relaxed the step-size dependence from norm to Bregman
divergence. This relaxation makes the step-size more geometry-aware and allows to
extends the analysis of universal Mirror Prox to the settings where the operator is not
smooth or bounded, which occur in many applied problems, such as support vector
machine, GAN with Kullback-Leibler losses or resource allocation problem.

Let we introduce the notions of the Bregman smoothness and Bregman Bound-
edness, based on the local norm on the convex set &, which were introduced in [?],
in order to overcame the problem of the failure of the Lipschitz continuity to solve
many practical problems that appear in many applications.

Definition 4.2 Let V be a finite dimensional vector space and V∗ its dual. Let
Z = B?0=(& − &), the subspace of V spanned by all vectors {G − H | G, H ∈ &}. A
local norm on & is a continuous assignment of a norm ‖ · ‖G on Z at each G ∈ &.
The induced dual local norm, for all { ∈ V∗, is defined as follows

‖{‖G,∗ = max
I∈Z
{|〈{, I〉| : ‖I‖G ≤ 1} .

Here we introduce two examples for clarity of the definition 4.2 (see [?])

Euclidean norm

Let & = Z = R=. The Euclidean norm on & is given by the standard expression
G =

∑=
8=1 G

2
8
, for any G = (G1, . . . , G=) ∈ &. The associated dual norm is the same.

Shahshahani ?-norm

Let & = R=++ and Z = R=. For all ? > 1, the Shahshahani ?-norm on & is defined
as

‖I‖G =
(
|I1 |?
G1
+ · · · + |I= |

?

G=

)1/?
, ∀G ∈ &, I ∈ Z.
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By Hölder’s inequality, the corresponding dual norm is given by

‖{‖G,∗ =
(
G
@−1
1 |{1 |@ + · · · + G@−1

3
|{= |@

)1/@
,

with ?−1 + @−1 = 1.

Definition 4.3 Let ‖ · ‖G be a local norm on & and 3 be a prox-function on &. An
operator � : & −→ V∗ is !-Bregman smooth on & if

‖� (H) − � (G)‖G,∗ ≤ !
√

2+ (H, G), ∀G, H ∈ &.

Note that, if we take 3 (G) = 1
2 ‖G‖

2, we recover the standard Lipschitz continuity
condition

‖� (H) − � (G)‖G,∗ ≤ !‖H − G‖, ∀G, H ∈ &.

Definition 4.4 An operator � : & −→ V∗ is "-Bregman bounded on & , if there
exist " > 0, such that

‖� (G)‖∗ ≤ "
√
+ (H, G)
‖H − G‖ , ∀G, H ∈ &.

Note that, if we take 3 (G) = 1
2 ‖G‖

2, we recover the standard recover the bounded
setting ‖� (G)‖∗ ≤ " .

Let 3 be a prox-function on a convex set & and + (·, ·) the Bregmann divergence
connected with 3. For the stocahstic setting of the problem (4.17), we assume the
following assumpsions

A1: The unbiased estimator of the operator �, i.e.

E[�̃ (G) |G] = � (G), ∀G ∈ &.

A1: The bounded variance, i.e.

E
[�̃ (G) − � (G)2

∗ |G
]
≤ f2; ∀G ∈ &.

A3: The almost sure boundedness, i.e. there exist � ′ > 0, such that ‖�̃ (G)‖∗ ≤ � ′,
for all G ∈ &.

A4: + (G∗, G) ≤ �2, where �2 = maxG∈& 3 (G) − minG∈& 3 (G) and G∗ is a solution
of the problem (4.17).

In [?], it was proposed the following adaptive step-size with different constant c:

W: =
�√

�2
0 +

∑:−1
8=1 |

2
:

, |2
: :=

+ (G: , H:−1) ++ (H: , G: )
22W2

8

, (4.32)
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where �0 is a constant.
For the Bregmann smooth setting of the problem (4.17), the following theorem is

proved in [?].

Theorem 4.5 Let � be a Bregman smooth on &. Under Assumptions A1–A4, after
# iterations of Algorithm 5, with W: as in (4.32) and 2 = 5, we have

E [DualGap (G# )] ≤ $
(√

log #
√
#

)
.

Also, For the Bregmann bounded setting of the problem (4.17), the following
theorem is proved in [?].

Theorem 4.6 Let � be a Bregman bounded on &. Under Assumption A1, after #
iterations of Algorithm 5, with [: as in (4.32) and 2 = 1, we have

E [DualGap (G# )] ≤ $
(√

log #
√
#

)
.

4.3.2 Generalized extragradient framework

It is known that when the operator � is monotone and in order to solve (4.17) if
a method is run with a stochastic first-order oracle, then its convergence rate is
$

(
1/
√
#

)
after # oracle calls [56]. This rate is, in general, not improvable [89]

without additional assumptions. The rate $
(
1/
√
#

)
can be improved when the

operator � is strongly monotone, i.e. there exist ` > 0, such that

〈� (G) − � (H), G − H〉 ≥ `‖G − H‖2, ∀G, H ∈ &. (4.33)

In this case, we can obtain a fast rate $ (1/#) with a rapidly decreasing step-size
[?]. This acceleration requires knowledge of the strong monotonicity modulus `,
and there is no known way to adapt to it.

In [?], for solving monotone variational inequalities in the presence of random-
ness and uncertainty, it was proposed an algorithmic framework which interpolates
between$

(
1/
√
#

)
and$ (1/#) depending on the setting of the problem. It includes

various popular stochastic first-order methods, such as dual averaging [88], dual ex-
trapolation [?] and optimistic gradient algorithms [?, ?], which allow to provide a
unified framework for their analysis.

To clarify the settings of the problem under consideration, we will denote the as-
sumptionsA1, A2, A3 as absolutely random [9]. On the other hand, the assumptions
A1, A2 and the following additional assumption
A5: Relative variance, i.e. there exist 2 > 0, such that
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E
[�̃ (G) − � (G)2

∗ |G
]
≤ 2‖� (G)‖2∗; ∀G ∈ &.

denoted as relatively random [95].
It is well known that the absolutely random assumptions are typical in order to

get the rate $
(
1/
√
#

)
for various optimization methods (see [56] and references

therein). On the other hand, the relatively random assumptions allow us to recover
the well known order-optimal bound $ (1/#) for deterministic settings [?].

For problem (4.17), in [?], it was proposed a generalized extragradient (GEG)
framework. Where by the given two sequences of dual vectors {: , {:+1/2, and the
sequence of step-sizes {W: }:≥0, GEG has the following form

G:+1/2 = G: − W:{: ,
H:+1 = H: − {:+1/2,
G:+1 = W:+1H:+1.

(4.34)

Under different choices of {: and {:+1/2, it can be write the Dual Averaging, Dual
Extrapolation and Optimistic Dual Averaging algorithms in the form of GEG, as the
follows.
Stochastic Dual Averaging: Let us choose

{: = 0 and {:+1/2 = �̃
(
G:+1/2

)
.

Then the GEG scheme reduces to the dual averaging scheme (DA):

H:+1 = H: − �̃ (G: ),
G:+1 = W:+1H:+1.

(4.35)

Stochastic Dual Extrapolation: Let us choose

{: = �̃ (G: ) and {:+1/2 = �̃
(
G:+1/2

)
.

Then GEG yields to Nesterov’s dual extrapolation method (DE):

G:+1/2 = G: − W: �̃ (G: ) ,
H:+1 = H: − �̃

(
G:+1/2

)
,

G:+1 = W:+1H:+1.

(4.36)

Stochastic Optimistic Dual Averaging: Let us choose

{: = �̃
(
G:−1/2

)
and {:+1/2 = �̃

(
G:+1/2

)
.

Then GEG yields to the optimistic dual averaging method (ODA):
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G:+1/2 = G: − W: �̃
(
G:−1/2

)
,

H:+1 = H: − �̃
(
G:+1/2

)
,

G:+1 = W:+1H:+1.

(4.37)

In [?], it was proposed and analyzed an adaptive and non-adaptive scenarios of
GEG, for the absolute and relative random noise,

4.3.2.1 Non-adaptive generalized extragradient

In this subsection we mention to a series of tight convergence rates for GEG with a
non-adaptive step-size sequence.

Theorem 4.7 Let G: , G:+1/2 be generated by GEG with a decreasing step-size W: =
$

(
1/
√
:

)
. Then under the absolutely random assumptions (i.e. A1, A2, A3), for

G# =
1
#

∑#
8=1 G8+1/2, after # calls of oracles we have

E [DualGap (G# )] ≤ $
(

1
√
#

)
.

Under the additional assumption of relative variance (assumption A5), it is pos-
sible to achieve an accelerated rate of $ (1/#). To this end, in [?], it was proved the
following results.

Theorem 4.8 Let G: , G:+1/2 be generated by GEG with a constant step-size W: :=
W, ∀: ≥ 0, which satisfies

min
{
(2!)−1,

(
4!2W

)−1
}
− 2W2 > 0.

Then under the relatively random assumptions (i.e. A1, A2, A5), for G# =
1
#

∑#
8=1 G8+1/2,after # calls of oracles we have

E [DualGap (G# )] ≤ $
(

1
#

)
.

4.3.2.2 Adaptive generalized extragradient

In this subsection we mention to a series of tight convergence rates for GEG with the
following adaptive step-size sequence

W: =

(
1 +

:−1∑
8=1

{8 − {8+1/22
∗

)−1/2

. (4.38)
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The next result gives the convergence rate of GEG with absolutely random as-
sumptions

Theorem 4.9 Let G: , G:+1/2 be generated by GEG with the step-size (4.38). Then
under the absolutely random assumptions (i.e. A1, A2, A3), for G# = 1

#

∑#
8=1 G8+1/2,

after # calls of oracles we have

E [DualGap (G# )] ≤ $
(

1
√
#

)
.

Under the additional assumption of relative variance (assumption A5), it is pos-
sible to achieve an accelerated rate of $ (1/#). To this end, in [?], it was proved the
following results.

Theorem 4.10 Let G: , G:+1/2 be generated by GEG with the step-size (4.38). Then
under the relatively random assumptions (i.e. A1, A2, A5), for G# = 1

#

∑#
8=1 G8+1/2,

after # calls of oracles we have

E [DualGap (G# )] ≤ $
(

1
#

)
.

4.4 Extragradient method with line search

Let (Ω, F , P) be a probability space, b : Ω −→ Ξ be a random variable with
distribution P. Let & ⊂ R= be a given closed and convex set and � : Ξ ×& −→ R=
be a measurable random operator. The expected operator defined as

) (G) = E[� (b, G)] =
∫
Ξ

� (b, G) dP(b), (G ∈ -). (4.39)

We assume that there is an access to the stochastic oracle of �, i.e. to the random
operator � via samples drawn from the distribution P.

Under stochastic oracle, a famous approach to solving stochastic variational in-
equalities (SVIs) is the stochastic approximation (SA) method, which was firstly
proposed by Robbins and Monro [103] for the stochastic optimization problems and
recently analyzed for SVIs [56, ?, ?, ?, ?]. In stochastic approximation methods, the
samples are accessed in an interior and online manner along the progress of a chosen
algorithm [83]. In order to construct an efficient SA method in terms of sample
complexity, a rapidly growing line of search proposes SA methods with variance
reduction using more than one oracle per iteration to relax the role of the stepsize
in reducing variances, such as gradient aggregation methods and dynamic sam-
pling methods [15]. These variance reduction methods use a constant stepsize policy
$ (1/!) with assuming knowledge of the Lipschitz constant !, and they improve
the convergence of stochastic approximation methods, but they are non-practical
because the constant ! is rarely known or it is challenging estimated [79, 83]. In [?],
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it was focused on the problem of the construction of a robust and efficient adaptive
variance reduction method, in which the stepsizes bounded away from zero, with
a faster rate of convergence and near optimal oracle complexity. It was proposed a
dynamic sampled stochastic approximated (DS-SA) extragradient method to solve
SVIs in the large sample setting, using the stochastic approximation scheme with
variance reduction and a line search scheme without requiring knowledge of the Lip-
schitz constant and it is near optimal oracle complexity $

(
Y−2) , up to logarithmic

factors on Y and !.
For any G ∈ R=, wewill use the notations: 3 (G, &) = infH∈&{‖G−H‖2},Proj& (G) =

argminH∈& ‖H − G‖22. Let -
∗ ≠ ∅ be the set of solutions of the problem (4.17) with

operator ) in (4.39). For the proposed DS-SA extragradient method with a DS-SA
line search scheme in [?], about its asymptotic convergence, it was proved that under
assumptions: the operator ) in (4.39) is !-Lipschitz continuous, i.e.

‖) (G) − ) (H)‖2 ≤ !‖G − H‖2, ∀G, H ∈ &,

and is pseudomonotone, i.e.

〈) (G), H − G〉 ≥ 0 =⇒ 〈) (H), H − G〉 ≥ 0, ∀G, H ∈ &,

(note that the monotonicity is a special case from pseudomonotonicity), and i.i.d.
sampling of some generated samples form the distribution P. The proposed al-
gorithm generates an almost surly (a.s.) bounded sequence {G: }:≥0, such that
lim:→∞ 3 (G: , -∗) = 0, and

lim:→∞
G: − Proj& [G: − ) (G: )]


2 = 0 (4.40)

Also, for the rate of convergence of this proposed algorithm, it was proved the
following bound for all : ≥ 1:

min
8∈{0,1,...,:−1}

E
[G8 − Proj& [G8 − ) (G8)]

2
2

]
≤ $

(
1
:

)
(4.41)

Let we set # := $ (=), as a result from the previous mentioned results, for the DS-
SA extragradient method with a DS-SA line search, after  = 2−1$

(
Y−1) iterations,

for any 2 > 0 and a given Y > 0, we have

min
0≤:≤ 

E
[G: − Proj& [G: − ) (G: )]

2
2

]
≤ Y.

4.5 Permutation-based stochastic gradient methods

In this section we consider only finite-sum problems
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min
G∈R=

{
5 (G) = 1

<

<∑
8=1

58 (G)
}

(4.42)

where each individual function 58 : R= → R is !8- smooth for each 8 ∈ [<]. In
this section we explain popular and extremely efficient approach, which was used
as heuristics, and provide sharp guarantees for family of methods based on data
permutation/shuffling. Alternatively, this class of methods is called as sampling
without replacement.

Let us consider the definition of permutations, which we will use in this section.
The bĳective function c : {1, . . . , <} → {c0, . . . , c<−1} is called permutation or
shuffling. Note that permuted indices c8 start from c0. It simplifies some derivations
below.

We consider the class of permutation-based methods, which rely on random or
deterministic shuffling of data points and perform sequential gradient steps following
the permuted order. We focus our attention on three most popular methods belong
to this class.

The most popular algorithm from the class of permutation-based methods is the
RandomReshuffling (RR). Let us describe how thismethodworks. In the beginning
of each epoch we sample set of indices {c0, c1, . . . , c<−1}without replacement from
the set {1, . . . , <} uniformly at random. We use this random permutation to perform
< sequential gradient steps of the form:

G:8+1 = G
:
8 − W∇ 5c8

(
G:8

)
. (4.43)

where W > 0 is a stepsize of the method. The starting iteration G:+1 in next epoch
is updated as the last iteration of previous epoch: G:+1 = G:+10 = G:= . After updating
we repeat < steps again for next epoch and in total we have  epochs. Note that we
generate a new permutation at the beginning of each epoch, this explains why we
use the term reshuffling.

We also consider another method, which is called Shuffle-Once (SO). This
method is identical to RR with only one difference that this method makes per-
mutation only once in the beginning of optimization process and it utilizes this
permutation in all epochs.

Finally, we consider deterministic algorithm Incremental Gradient (IG), which
is equivalent to SO with one exception that initial permutation is deterministic and
not random as it is used in SO. In our analysis we provide bounds for IG in worst
case scenario of all possible permutations.

4.5.1 Strong convexity assumption for individual functions

In this section we provide convergence guarantees for Random Reshuffling and
Shuffle-Once methods in case of strong convexity of individual functions 58 . The
standard approach of analyzing SGD method is based on the fact that all iterates
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converge to neighborhood of the optimum G∗ and the radius of neighborhood is
characterized by level of noise. However, the proof technique for RandomReshuffling
and Shuffle-Once in case of strong convexity of individual functions is significantly
different and relies on the observation that each inner iterate converges to its own
point. For fixed permutation c these points have the following form:

Definition 4.5 Given a permutation c, we define G∗
8
as 8 gradient steps from point G∗:

G∗8
def
= G∗ − W

8−1∑
9=0
∇ 5c 9 (G∗) , 8 = 1, . . . , < − 1. (4.44)

Using this new sequence allows us to introduce a better notion of variance for
Random Reshuffling and Shuffle-Once algorithms:

Definition 4.6 For fixed stepsize W > 0 and a random permutation c of {1, 2, . . . , =}
and using definition 4.5 for the point G∗

8
we can define shuffling variance as

f2
Shuffle

def
= max

8=1,...,=−1

[
1
W2E

[
� 5c8

(
G∗8 , G

∗) ] ] (4.45)



Chapter 5
Stochastic linear coupling under strong growth
condition

Abstract In this chapter, we ...
In this chapter, we consider

min
G∈R=

{
5 (G) = Eb∼D [ 5 (G, b)]

}
(5.1)

with 5 being !-smooth meaning that 5 is differentiable and for all G, H ∈ R= its
gradient is !-Lipschitz:

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ !‖G − H‖2. (5.2)

and satisfies the following assumption

Assumption 5.1 (Strong growth condition (SGC))We say, that function 5 satisfies
the strong growth condition, if for a stochastic subgradient 6(G, b) the following holds
for any G ∈ R= with constant [ and additive error f2:

E
[
‖6(G, b)‖22

]
≤ [‖∇ 5 (G)‖22 + f

2

5.1 Stochastic Linear coupling

Theorem 5.1 (Convergence rate of Algorithm 6) Let 5 (G) be convex and !-
Lipschitz smooth. Let for stochastic gradient 6(G), the SGC holds. Then for all
# > 0, the output of Algorithm 6 satisfies the following:

E[ 5 (H# ) − 5 (G∗)] ≤
2![2‖G0 − G∗‖22
(# + 1)2

+ f
2 (# + 1)
![2 . (5.6)

Proof Step 1 From !-smoothness of 5 (G) and (5.4) we have:

173
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Algorithm 6 Stochastic Linear Coupling (SLC).
Input: starting point G0 ∈ R3 , number of iterations # .
1: H0 = I0 = G0.
2: for : = 0, 1, . . . , # − 1 do
3: U:+1 =

:+2
2![2 and g: = 1

U:+1![2 =
2
:+2

4:
G:+1 = g: I

: + (1 − g: )H: (5.3)

5:
H:+1 = G:+1 − 1

![
6:+1 (G:+1) (5.4)

6:
I:+1 = I: − U:+16:+1 (G:+1) (5.5)

7: end for
Output: H#

5 (H:+1) ≤ 5 (G:+1) + 〈∇ 5 (G:+1), H:+1 − G:+1〉 + !
2
‖H:+1 − G:+1‖22

= 5 (G:+1) − 1
![
〈∇ 5 (G:+1), 6(G:+1)〉 + 1

2![2 ‖6(G
:+1)‖22.

Let E: [·] = E[· | I: , H: ]. Then E: [6(G:+1)] = ∇ 5 (G:+1). Using the SGC we obtain
the following

E: [ 5 (H:+1)] ≤ 5 (G:+1) − 1
![
〈∇ 5 (G:+1),E: [6:+1]〉 +

1
2![2E:

[
‖6(G:+1)‖22

]
≤ 5 (G:+1) − 1

2![
‖∇ 5 (G:+1)‖22 +

f2

2![2 .

Thus, rearranging the terms we get the following

‖∇ 5 (G:+1)‖22 ≤ 2![
(
5 (G:+1) − E: [ 5 (H:+1)]

)
+ f

2

[
(5.7)

Step 2
From (5.5) it holds

U:+1〈6(G:+1), I: − G∗〉 = −〈I:+1 − I: , I: − G∗〉 =
1
2
‖I:+1 − I: ‖22 +

1
2
‖I: − G∗‖22

− 1
2
‖I:+1 − I∗‖22,

Next we use (5.5) and −〈0, 1〉 = 1
2 ‖0‖

2
2 +

1
2 ‖1‖

2
2 −

1
2 ‖0 + 1‖

2
2 for all 0, 1 ∈ R= and

get
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U:+1〈6(G:+1), I: − G∗〉 =
U2
:+1
2
‖6(G:+1)‖22 +

1
2
‖I: − G∗‖22 −

1
2
‖I:+1 − G∗‖22.

Taking the conditional expectation E: [·] we get

U:+1〈∇ 5 (G:+1), I: − G∗〉 ≤
U2
:+1[

2
‖∇ 5 (G:+1)‖22 +

U2
:+1f

2

2
+ 1

2
‖I: − G∗‖22

− 1
2
E:

[
‖I:+1 − G∗‖22

]
.

Using (5.7) we obtain

U:+1〈∇ 5 (G:+1), I: − G∗〉 ≤ ![2U2
:+1

(
5 (G:+1) − E: [ 5 (H:+1)]

)
+ U2

:+1f
2 + 1

2
‖I: − G∗‖22

− 1
2
E:

[
‖I:+1 − G∗‖22

]
. (5.8)

Step 3
Now we consider

U:+1
(
5 (G:+1) − 5 (G∗)

)
≤ U:+1〈∇ 5 (G:+1), G:+1 − G∗〉

= U:+1〈∇ 5 (G:+1), G:+1 − I:〉 + U:+1〈∇ 5 (G:+1), I: − G∗〉
(5.8)
≤ (1 − g: )U:+1

g:
〈∇ 5 (G:+1), H: − G:+1〉

+ ![2U2
:+1

(
5 (G:+1) − E: [ 5 (H:+1)]

)
+ U2

:+1f
2

+ 1
2
‖I: − G∗‖22 −

1
2
E:

[
‖I:+1 − G∗‖22

]
,

where we used (5.3). Using g: = 1
U:+1![2 and the convexity of 5 we get

U:+1
(
5 (G:+1) − 5 (G∗)

)
≤ (U2

:+1![
2 − U:+1) ( 5 (H: ) − 5 (G:+1))

+ ![2U2
:+1

(
5 (G:+1) − E: [ 5 (H:+1)]

)
+ U2

:+1f
2

+ 1
2
‖I: − G∗‖22 −

1
2
E:

[
‖I:+1 − G∗‖22

]
.

We rewrite this as follows

U:+1 5 (G∗) + U2
:+1f

2 ≥ U2
:+1![

2E: [ 5 (H:+1)] − (U2
:+1![

2 − U:+1) 5 (H: )

+ 1
2
E:

[
‖I:+1 − G∗‖22

]
− 1

2
‖I: − G∗‖22.

Step 4
Taking the expectation from the inequality from Step 3 and summing for : =

0, 1, . . . , # − 1, we get
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#−1∑
:=0

(
5 (G∗)U:+1 + f2U2

:+1

)
≥
#−1∑
:=0

U2
:+1![

2E[ 5 (H:+1)]

−
#−1∑
:=0
(U2
:+1![

2 − U:+1)E[ 5 (H: )]

+
#−1∑
:=0

(
1
2
E

[
‖I:+1 − G∗‖22

]
− 1

2
E

[
‖I: − G∗‖22

] )
︸                                                      ︷︷                                                      ︸

1
2E[ ‖I#−G∗ ‖22]− 1

2 ‖G0−G∗ ‖22

Using U:+1 = :+2
2![2 , we have

U2
:+1![

2 − U:+1 − U2
:![

2 =
:2 + 4: + 4

4![2 − : + 2
2![2 −

:2 + 2: + 1
4![2 = − 1

4![2 .

Thus, we get the following

#−1∑
:=0

(
5 (G∗)U:+1 + f2U2

:+1

)
≥
#−1∑
:=0

(
U2
:+1![

2E[ 5 (H:+1)] − U2
:![

2E[ 5 (H: )]
)

︸                                                       ︷︷                                                       ︸
U2
#
![2E[ 5 (H# ) ]− 1

4![2 5 (H0)

+ 1
4![2

#−1∑
:=0
E[ 5 (H: )] + 1

2
E

[
‖I# − G∗‖22

]
− 1

2
‖G0 − G∗‖22.

Then we use U:+1 to estimate the summ in the L.H.S

#−1∑
:=0

U:+1 =
1

2![2

#−1∑
:=0
(: + 2) = # (# + 3)

4![2 ,

#−1∑
:=0

U2
:+1 =

1
4!2[4

#−1∑
:=0
(: + 2)2 ≤ (# + 1)3

4!2[4

and get

# (# + 3)
4![2 5 (G∗) + f

2 (# + 1)3
4!2[4 ≥ (# + 1)2

4![2 E[ 5 (H
# )] + 1

4![2

#−1∑
:=1
E [ 5 (H: )]︸   ︷︷   ︸
≥ 5 (G∗)

+ 1
2
E

[
‖I# − G∗‖22

]︸             ︷︷             ︸
≥0

−1
2
‖G0 − G∗‖22.

Then we rewrite this as follows
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(# + 1)2
4![2 E[ 5 (H

# )] ≤
(
# (# + 3)

4![2 − # − 1
4![2

)
5 (G∗) +

‖G0 − G∗‖22
2

+ f
2 (# + 1)3
4!2[4

=
(# + 1)2

4![2 5 (G∗) +
‖G0 − G∗‖22

2
+ f

2 (# + 1)3
4!2[4 .

Rearranging the terms we get the desired statement

E[ 5 (H# )] − 5 (G∗) ≤
2![2‖G0 − G∗‖22
(# + 1)2

+ f
2 (# + 1)
![2 .

5.2 Gradient-free optimization

In this section, we suppose that instead of first-order oracle we are given zeroth-
order oracle. Moreover, we suppose objective 5 (G, b) can be observed trough its
noisy approximation

i(G, b) , 5 (G, b) + X(G). (5.9)

Now stochastic gradient 6(G, b) can be approximated by by the function evaluations
in two random points closed to G variance [113]:

6(G, b, 4) = =

2g
(i(G + g4, b) − i(G − g4, b)) 4 (5.10)

where vector 4 is picked uniformly at random from the Euclidean unit sphere {4 :
‖4‖2 = 1}, and g > 0 is some constant. Next, we will show that stochastic gradient
estimation 6(G, b, 4) satisfies the SGC (Assuption 5.1).

Now we introduce the following smooth approximation for 5 (·)

5 g (G) , E4̃ 5 (G + g4̃), (5.11)

where g > 0 and 4̃ is a vector picked uniformly at random from the Euclidean unit
ball: {4̃ : ‖4̃‖2 ≤ 1}. Function 5 g (G) can be referred as a smooth approximation of
5 (G) and it will be used only for deriving the convergence rate of proposed algorithm.
Here 5 (G) , E 5 (G, b).

Assumption 5.2 (Boundedness of the noise) For all G ∈ X, it holds |X(G) | ≤ Δ.

Lemma 5.1 For 6(G, b, 4) from (5.10), the following holds Assumption 5.2

Eb ,4
[
‖6(G, b, 4)‖2@

]
≤
√

3‖∇ 5 (G)‖22 min{2@ − 1, 32 ln = − 8}=
2
@

+ 3=2!2g2E
[
‖4‖2@

]
+ =

2Δ2

2g2 E
[
‖4‖2@

]
.

Proof Let us consider
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Eb ,4
[
‖6(G, b, 4)‖2@

]
= Eb ,4

[ =2g (i(G + g4, b) − i(G − g4, b)) 42

@

]
=
=2

4g2Eb ,4
[
‖4‖2@ ( 5 (G + g4, b) + X(G + g4) − 5 (G − g4, b) − X(G − g4))2

]
=
=2

4g2Eb ,4
[
‖4‖2@ ( 5 (G + g4, b) − 5 (G − g4, b) + 〈∇ 5 (G − g4, b), 2g4〉

−〈∇ 5 (G − g4, b), 2g4〉 + X(G + g4) − X(G − g4))2
]
. (5.12)

Then we use that (0 + 1 + 2)2 ≤ 302 + 312 + 322 for (5.12) and obtain

Eb ,4
[
‖6(G, b, 4)‖2@

]
≤ 3=2

4g2Eb ,4
[
‖4‖2@ ( 5 (G + g4, b) − 5 (G − g4, b) − 〈∇ 5 (G − g4, b), 2g4〉)2

]
+ 3=2

4g2Eb ,4
[
‖4‖2@ 〈∇ 5 (G − g4, b), 2g4〉2

]
+ =2

4g2Eb ,4
[
‖4‖2@ (X(G + g4) − X(G − g4))2

]
. (5.13)

Now for the first term in the R.H.S. of (5.13) we use 5 (G) is !-Lipschitz smooth

3=2

4g2Eb ,4
[
‖4‖2@ ( 5 (G + g4, b) − 5 (G − g4, b) − 〈∇ 5 (G − g4, b), 2g4〉)2

]
≤ 3=2

4g2E
[
‖4‖2@

]
· (2!g2)2E

[
‖4‖22

]
= 3=2!2g2E

[
‖4‖2@

]
. (5.14)

For the second term in the R.H.S. of (5.13) we have from [47]

3=2

4g2Eb ,4
[
‖4‖2@ 〈∇ 5 (G − g4, b), 2g4〉2

]
≤ 3
√

3‖∇ 5 (G)‖22 min{2@−1, 32 ln =−8}=
2
@ .

(5.15)
Then for the third term in the R.H.S. of (5.13) we use Assumption 5.2 and get the
following

=2

4g2E4
[
‖4‖2@ (X(G + g4) − X(G − g4))2

]
≤ =

2Δ2

g2 E
[
‖4‖2@

]
(5.16)

Next we use (5.14), (5.15) and (5.16) for (5.13) and get the statement of the lemma.

Eb ,4
[
‖6(G, b, 4)‖2@

]
≤
√

3‖∇ 5 (G)‖22 min{2@ − 1, 32 ln = − 8}=
2
@

+ 3=2!2g2E
[
‖4‖2@

]
+ =

2Δ2

g2 E
[
‖4‖2@

]
.

Lemma 5.1 for the Euclidean case (q=2)
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For the Euclidean case, Lemma 5.1 can be simplified

Eb ,4
[
‖6(G, b, 4)‖22

]
≤ 3
√

3=‖∇ 5 (G)‖22 + 3=2!2g2 + =
2Δ2

g2 .

Thus, for the Euclidean case, Lemma (5.1) implies that Assumption 5.1 (SGC)
holds with [ = 3

√
3= and f2 = 3=2!2g2 + =2Δ2

g2 .

5.3 Component linear coupling





Appendix A
Concentration inequalities

Concentration inequalities are fundamental tools in probabilistic combinatorics and
theoretical computer science for proving that random functions are near their means.

A.1 Azuma–Hoeffding inequality

A.2 Bernstein Inequality

A.3 McDiarmid’s inequality

McDiarmid’s inequality (or bounded differences inequality) [?] is one of the concen-
tration inequalities, which provide bounds on how a random variable deviates from
its expected value. It shows how the values of a bounded function of independent
random variables concentrate about its mean.

McDiarmid’s inequality states that if -1, . . . , -= are given independent random
variables in some measurable space X, and let 5 : X= → R be a function of
-1, . . . , -=, for all 8 = 1, . . . , =, there is 28 ≥ 0, such that

| 5 (G1, . . . , G8−1, G8 , G8+1, . . . , G=) − 5 (G1, . . . , G8−1, G
′, G8+1, . . . , G=) | 6 28 ,

for all G1, . . . , G=, G
′ ∈ X. Then

P ( | 5 (-1, . . . , -=) − E 5 (-1, . . . , -=) | ≥ n) 6 2 exp

(
−2n2∑=
8=1 2

2
8

)
. (A.1)

McDiarmid inequality is a generalization of Hoeffding’s inequality, which can be
obtained by assuming X = [0, 1] and choosing 5 (-1, . . . , -=) =

∑=
8=1 -8 .
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Appendix B
Main Results of Convex Analysis and Convex
Optimization

B.1 Convex Analysis Tools

Let (E, ‖ · ‖) be a normed finite-dimensional vector space, with an arbitrary norm
‖ · ‖, and E∗ be the conjugate space of E with the following norm

‖H‖∗ = max
G∈E
{〈H, G〉 : ‖G‖ ≤ 1},

where 〈H, G〉 is the value of the continuous linear functional H ∈ E∗ at G ∈ E.
If E = R=, then for 1 ≤ ? < ∞, the most popular norms are so-called ;?-norms

‖G‖ ? =
(
=∑
8=1
|G8 |?

)1/?

, G = (G1, . . . , G=) ∈ R=.

Among them, there are three norms, which are commonly used

• Euclidean norm: ‖G‖2 =
(∑=

8=1 G
2
8

)1/2
.

• ;1-norm: ‖G‖1 =
=∑
8=1
|G8 |.

• ;∞-norm (it is also called Chebyshev norm): ‖G‖∞ = max
1≤8≤=

|G8 |.

B.1.1 Convex sets

Definition B.1 A set & ⊆ E is convex if _G + (1 − _)H ∈ & for any G, H ∈ & and
_ ∈ [0, 1].

Definition B.2 Let & ⊂ E be a closed convex set. For any H ∈ E, we define the
closest point to H in & as

Proj& (H) = arg min
G∈&
‖H − G‖.
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Proj& (H) is called the projection of H onto &.

Proposition B.1 Let & ⊂ E be a closed convex set and H ∈ E be given. Then the
Proj& (H) must exist and unique.

Remark B.1 In many cases when the set & is relatively simple, we can compute
Proj& (H) explicitly. Let us see the following two examples

• Let� :=
{
G ∈ E : 0) G + 1 = 0

}
, where 0 ∈ E and 1 ∈ R, be a given hyperplane.

Then the projection of any H ∈ E onto � is given by

Proj� (H) = H −
(0) H + 1)0
‖0‖2

.

• Let & be the unit ball. Then the projection of any H ∈ E onto & is given by

Proj& (H) =
H

‖H‖ .

B.1.2 Differentiable convex functions

Let 5 be a function. By dom 5 = {G ∈ E : | 5 (G) | < ∞} we denote the domain of the
function 5 . We always assume that 5 is proper, i.e. dom 5 ≠ ∅.

Definition B.3 Let & ⊆ E be a nonempty convex set and 5 : & → R be a given
function. The function 5 is called convex on the set & if

5 (_G + (1 − _)H) ≤ _ 5 (G) + (1 − _) 5 (H) ∀ G, H ∈ & and _ ∈ (0, 1). (B.1)

A function 5 is called strictly convex if the inequality (B.1) is strict, whenever
G ≠ H and _ ∈ (0, 1). We say that 5 is concave if − 5 is convex. Similarly 5 is
strictly concave if − 5 is strictly convex. Moreover, let ` > 0, the function 5 is called
`–strongly convex if and only if

5 (_G + (1 − _)H) + _(1 − _) `
2
‖G − H‖2 ≤ _ 5 (G) + (1 − _) 5 (H), (B.2)

for all G, H ∈ & and _ ∈ (0, 1). The parameter ` is called the strong convexity
parameter of 5 . Note that, the convex function is strongly convex with parameter
` = 0.

When the function 5 is differentiable, then the Definition B.3 is equivalent to the
following definition

Definition B.4 A continuously differentiable function 5 : & → R is called convex
on the convex set & if

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 ∀ G, H ∈ &, (B.3)
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where ∇ 5 (G) denotes the gradient of 5 at the point G.
Similar to the Definition B.4, 5 will be strictly convex if the inequality (B.3) is

strict, 5 is concave if the inequality (B.3) is reversed, and 5 is strictly concave if the
reverse inequality is strict.

Moreover, a continuously differentiable function 5 is called `–strongly convex
with the strong convexity parameter ` > 0 if and only if

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 + `
2
‖H − G‖2 ∀ G, H ∈ &. (B.4)

Theorem B.1 Let & ⊆ E be an open set. A twice continuously differentiable
function 5 : & → R is convex if and only its Hessian is positive semidefinite, i.e.,

∇2 5 (G) � 0 ∀ G ∈ &.

Analogously, we say that, the twice continuously differentiable function 5 is
strictly convex if its Hessian is positive definite, concave if its Hessian is negative
semidefinite, and strictly concave if its Hessian is negative definite.

B.1.3 Non-differentiable convex functions

Note that the convex functions are not always differentiable everywhere over their
domain. For the non-differentiable functions, there is an important notion, which is
called subgradients. This notion is the generalization of the gradients for differen-
tiable functions.

Definition B.5 A vector 6 ∈ E∗ is called a subgradient of the function 5 at the point
G ∈ dom 5 if for any H ∈ dom 5 we have

5 (H) ≥ 5 (G) + 〈6, H − G〉. (B.5)

The set of all subgradients of 5 at G is called the subdifferential of the function 5 at
the point G and is denoted by m 5 (G).

Remark B.2 In the casewhen the function 5 is non-differentiable, the strongly convex
condition (B.2) is equivalent to the following

5 (H) ≥ 5 (G) + 〈6, H − G〉 + `
2
‖H − G‖2 ∀ G, H ∈ &. (B.6)

where 6 ∈ m 5 (G) is any subgradient of 5 at G.

Let 51, 52 : & → R be strongly convex functions with parameters `1, `2, respec-
tively. Then the function U1 51 + U2 52, for any U1, U2 ≥ 0 is (U1`1 + U2`2)-strongly
convex, and the function 5 (G) = max{ 51, 52} is (min{`1, `2})-strongly convex.
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B.1.4 Lipschitz continuity

Definition B.6 Let & ⊆ E be an open convex set and 5 : & → R. Then 5 is called
Lipschitz-continuous if there exists a constant " > 0, such that

| 5 (G) − 5 (H) | ≤ " ‖G − H‖ ∀ G, H ∈ &. (B.7)

This means that at every point G ∈ &, there is a subgradient 6 ∈ m 5 (G), such that
‖6‖∗ ≤ " .

Definition B.7 Let & ⊆ E be an open convex set and 5 : & → R is differentiable
function in &, we say that 5 has a Lipschitz continuous gradient (or the gradient of
5 is Lipschitz-continuous or 5 is !–smooth) if there exists a constant ! > 0, such
that

‖∇ 5 (G) − ∇ 5 (H)‖∗ ≤ !‖G − H‖ ∀ G, H ∈ &. (B.8)

Theorem B.2 Let& ⊆ E be an open convex set and 5 : & → R is !–smooth convex
function, then ∀G, H ∈ &

0 ≤ 5 (H) − 5 (G) − 〈∇ 5 (G), H − G〉 ≤ !

2
‖G − H‖2, (B.9)

‖∇ 5 (G) − ∇ 5 (H)‖2 ≤ 2! ( 5 (G) − 5 (H) − 〈∇ 5 (H), G − H〉)︸                                    ︷︷                                    ︸
+ 5 (G,H)

. (B.10)

B.2 Convex Optimization Tools

Let (E, ‖ · ‖) be a normed finite-dimensional vector space. Let we consider the
following constrained optimization problem

min
G∈&

5 (G), (B.11)

For this problem, we have the following concepts

• The dimension of the problem is defined by the dimension of E.
• A feasible solution is any point G that belongs to the feasible set &.
• For a given accuracy Y > 0. An Y–solution of the problem (B.11), is the point
G∗ ∈ & (which is called a minimizer of the function 5 ), such that 5 (G) − 5 (G∗) ≤
Y, for any G ∈ &. Note that, G∗ is not necessarily unique.

• A global optimal solution is a feasible solution G∗ such that

5 (G∗) ≤ 5 (G) ∀ G ∈ &.
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• A local optimal solution is a feasible solution G∗ for which there exists A > 0
such that

5 (G∗) ≤ 5 (G) ∀ G ∈ {G ∈ E : ‖G − G∗‖ < A} ∩&.

• The optimal value of the objective function 5 is defined as 5 ∗ = minG∈& 5 (G).
• The set of optimal solutions is defined as -∗ = {G∗ ∈ & : 5 (G∗) = 5 ∗} .

The problem (B.11) is very general and covers very different types of objective
functions and feasible sets. Unfortunately, solving the optimization problem (B.11)
is a big challenge. For a majority of optimization problems, there is no hope to find
a solution analytically (i.e. find a closed-form to an optimal solution). In general,
we cannot guarantee whether one can find an optimal solution, and if so, how much
computational effort one needs.

However, it turns out that we can provide such guarantees for a special class of
problems, namely convex optimization problems, where the set & is convex and the
function 5 is also convex.

B.2.1 Properties of convex optimization problems

In this subsection we mention to a review of some basic and fundamental properties
of convex optimization problem (B.11).

Theorem B.3 Let 5 be a convex function on a convex set & and let G∗ ∈ & ∩ dom 5

be a local minimizer of 5 on &. Then G∗ is a global minimizer of 5 on &. Moreover,
the set -∗ of all minimizers of 5 on & is convex.

When the objective function 5 is strongly convex, then we have the following
theorem

Theorem B.4 If 5 is strongly convex, then the optimal solution set -∗ is either empty
or a singleton.

Concerning the existence of an optimal solution, we have the following theorem

Theorem B.5 Let 5 be a convex function on a closed convex set & and the set
{G ∈ & : 5 (G) ≤ U} is nonempty and compact, for some U ∈ R. Then the optimal
solution set -∗ is nonempty, compact and convex.

In particular, we can guarantee the existence and uniqueness of an optimal solu-
tion, when 5 is a differentiable strongly convex function and & is a closed convex
set.

Another important property of convex problems is the existence of necessary and
sufficient optimality conditions, which we can mention in the following theorem

Theorem B.6 Assume that the problem (B.11) is unconstrained, i.e. & = E and that
5 is convex and differentiable. Then the point G∗ ∈ E is an optimal solution of (B.11)
if and only if ∇ 5 (G∗) = 0.
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When the problem is constrained, i.e. & ≠ E, the necessary and sufficient opti-
mality condition in Theorem B.6 becomes

Theorem B.7 Let 5 be a differentiable convex function and & be a closed convex
set. The point G∗ ∈ & is an optimal solution of (B.11) if and only if

〈∇ 5 (G∗), G − G∗〉 ≥ 0 ∀ G ∈ &. (B.12)

For non-smooth problems, i.e. when the objective function 5 is non-differentiable,
we cannot use the gradient in the optimality condition (Theorems B.6 and B.7). The
equivalent results can be obtained by replacing the gradient ∇ 5 with an arbitrary
subgradient of 5 .

More precisely, the analogue of Theorem B.6 has the following form

Theorem B.8 Assume that & = E and that 5 is convex. Then G∗ ∈ E is an optimal
solution of (B.11) if and only if 0 ∈ m 5 (G∗).

In the case of constrained problems, the analogue of Theorem B.7 has the follow-
ing form

Theorem B.9 Let 5 be a convex function and & be a closed convex set. The point
G∗ ∈ & is an optimal solution of (B.11) if and only if there exists 6 ∈ m 5 (G∗), such
that

〈6, G − G∗〉 ≥ 0, ∀ G ∈ &. (B.13)

B.3 Numerical methods for convex optimization problems

B.3.1 The concept of black-box

As a rule, inmathematical optimization, numericalmethods are developed for solving
many problems of the same type with similar characteristics (problems of the same
class). Therefore, the effectiveness of the method on some classes of problems can
be considered an important characteristic of the quality of the method.

The information about the problem, which is known in advance to the numerical
method, is called the model of the problem being solved. The efficiency (therefore
the optimality) of the method on the class of problems will be understood in the
sense of the number of calls to the oracle [?], where the oracle is understood as a
unit that answers the successive questions of the methods. In depending on the level
of the available informations about the model of the problem under consideration we
have: zero-order oracle, which returns the value of the objective function, first-order
oracle which returns the value of the objective function and its subgradient.

The number of calls of the oracle which is necessary to solve an optimization
problem up to accuracy Y is called the complexity (more precisely it is called the
analytical complexity) of the problem. There is one standard assumption on the
oracle which allows us to obtain the majority of results on analytical complexity for
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optimization schemes. This assumption, called the Local Black Box Concept, which
is [89]
1. The only information available for the numerical scheme is the answer of the

oracle.
2. The oracle is local, that is a small variation of the problem far enough from the

test point G, which is compatible with the description of the problem class, does
not change the answer at G.
This concept is one of the most useful inventions in numerical analysis. In partic-

ular, it allows one to obtain the corresponding upper and lower bounds for the oracle
complexity of solving optimization problems for various sub-classes of convex func-
tions.

Let G∗ be a solution of (B.11) and Y > 0 be a given accuracy parameter. We
call Ĝ an Y-solution of (B.11) if 5 (Ĝ) − 5 (G∗) ≤ Y. In 1983, Nemirovsky and Yudin
in their monograph [?], derived the optimal worst-case complexities of first-order
methods for several classes of convex problems. If a first-order method attains the
worst-case complexity of a class of problems, it is called optimal (see Table B.1).
A special feature of these methods is that the corresponding complexity does not
depend explicitly on the problem dimension =.

Table B.1: Optimal complexities of the first-order methods for several classes of
problems, with # ≤ =, where # is the number of calls of the oracle, = is the
dimension of the problem and ' is the distance between the initial point and exact
solution of the problem.

5 is " -Lipschitz ∇ 5 is !-Lipschitz

5 is convex $

(
"2'2

Y2

)
$

(√
!'2

Y

)
5 is `-strongly convex $

(
"2

`Y

)
$

(√
!
`

ln
(
`'2

Y

))
, ∀#

Moreover, the lower bounds in the non-smooth case ( 5 is Lipschitz) are achieved
using subgradient methods, and in the smooth case ( 5 has a Lipschitz gradient) are
achieved using the fast accelerated gradient method proposed by Yu. Nesterov in
1983 [?].

B.3.2 Convex optimization methods for lower dimensional problems

For deterministic low-dimensional minimization problems, cutting plane (or center
of gravity type) methods are arguably most efficient as they achieve linear conver-
gence rate while imposing very mild assumptions [?]. Prominent examples of such
methods are the Vaidya’s cutting plane method [?, ?] and ellipsoid method [95].

In this section, we review some fundamental results of these methods, for the
lower dimensional problems.
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B.3.2.1 Vaidya’s cutting plane method

Let we focus on the problem (B.11), where & ⊂ R= is a convex compact set with
a nonempty interior and the function 5 : & −→ R is continuous and convex. Let
% = {G ∈ R= : �G ≥ 1} be a bounded =-dimensional polyhedron, where � ∈ R<×=
and 1 ∈ R<. The logarithmic barrier of the set % is defined as

Barr(G) = −
<∑
8=1

ln
(
0>8 G − 18

)
,

where 0>
8
is the ith row of the matrix �. The Hessian � (G) of the function Barr(G) is

� (G) =
<∑
8=1

080
>
8(

0>
8
G − 18

)2 .

The matrix � (G) is positive definite for all G in the interior of %. The volumetric
barrierV for % is defined as

V(G) = 1
2

ln(det(� (G))),

where det(� (G)) designates the determinant of � (G). The point of minimum of the
functionV on % will be referred to as the volumetric center of the set %. Denote

f8 (G) =
0>
8
(� (G))−108(
0>
8
G − 18

)2 , 1 ≤ 8 ≤ <. (B.14)

Then the gradient of the volumetric barrierV can be written as

∇V(G) = −
<∑
8=1

f8 (G)
08

0>
8
G − 18

.

Let Q(G) be defined as

Q(G) =
<∑
8=1

f8 (G)
080
>
8(

0>
8
G − 18

)2 .

Note that Q(G) is positive definite on the interior of % and also that Q(G) is a
good approximation to the Hessian of the functionV(G); i.e., ∇2V(G).

Vaidya’smethod generates a sequence of pairs (�: , 1: ) ∈ R<×=×R< such that the
corresponding polyhedron contain the solution. For the initial polyhedron, defined
by the pair (�0, 10), one usually takes a simplex (the algorithm can start from any
convex bounded =-dimensional polyhedron that easily yields to the calculation of its
volumetric center, for example, from the =-rectangle).

Let G: (: ≥ 0) denote the volumetric center of the polyhedron defined by the pair
(�: , 1: ), and suppose that the quantities {f8 (G: )}1≤8≤< have been calculated for
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this polyhedron, by (B.14). The next polyhedron (�:+1, 1:+1) is obtained from the
current one as a result of either joining or removing a constraint:

1. If for some 8 ∈ {1, . . . , <} one has f8 (G: ) = min1≤ 9≤< f9 (G: ) < W, then
(�:+1, 1:+1) is obtained by eliminating the ith row from (�: , 1: ).

2. Otherwise, the oracle called up at the current point G: returns a vector 2: such
that 5 (G) 6 5 (G: ) ∀G ∈

{
I ∈ &G : 2>

:
I ≥ 2>

:
G:

}
; i.e., 2: ∈ −m 5 (G: ). Select,

V: ∈ R such that
2>
:
(� (G: ))−1 2:(
G>
:
2: − V:

)2 =

√
W

5
.

Determine (�:+1, 1:+1) by adding the row (2: , V: ) to (�: , 1: ).
The volumetric barrier V: is a self-concordant function; therefore, it can be

efficiently minimized by the Newton method—one step of the Newton method for
V: made from G:−1 is sufficient. For more details and theoretical analysis, refer to
[?, ?].

The following theorem gives an estimate for the complexity of Vaidya’s algorithm.

Theorem B.10 LetBd andB' be someEuclidean balls of radii d and ', respectively,
such that Bd ⊂ & ⊂ B' and let " > 0 be a number such that | 5 (G1) − 5 (G2) | 6
";∀G1, G2 ∈ &.Then Vaidya’s method finds an Y-solution of problem (B.11) in
$

(
= ln ="'

dY

)
iterations.

B.3.2.2 The ellipsoid method

Recall that an ellipsoid is a convex set of the form

E =
{
G ∈ R= : (G − 2)>�−1 (G − 2) ≤ 1

}
where 2 ∈ R= and � is a symmetric positive definite matrix.

In this subsection we mention to the ellipsoid method with X-subgradient (listed
as Algorithm 7, below. Note that when X = 0 then the X-ellipsoid method coincide
with the usual ellipsoid method [?]), for problem (B.11), where in each iteration
of this method we use the X-subgradient of the objective function. The concept of
X-subgradient can be defined as follows

Definition B.8 Let X ≥ 0, we call { ∈ R= a X-subgradient of the convex function
5 : & −→ R at the point H ∈ &, if 5 (G) ≥ 5 (H) + 〈{, G − H〉 − X, ∀G ∈ &. The set of
X-subgradients of 5 at H denoted by mX 5 (H).

Note, that the X-subgradient coincides with the usual subgradient when X = 0.
For Algorithm 7, in [?], it was proved the following result.

Theorem B.11 Let& be a compact convex set, which is contained in some Euclidean
ball of radius ' and includes some Euclidean ball of radius d, 5 : & → R is a
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Algorithm 7 Ellipsoid method with X-subgradient for the problem (B.11).
Input: Number of iterations # > 0, X > 0, the ball BR ⊇ &, with center 2 and radius R.
1: E0 := BR , �0 := R2�= , 20 := 2.
2: for : = 0, . . . , # − 1 do
3: if 2: ∈ & then
4: {: := { ∈ mX 5 (2: ) ,
5: if {: = 0 then
6: return 2: ,
7: end if
8: else
9: {: := {, where { ≠ 0, such that & ⊂ {G ∈ E: : 〈{, G − 2: 〉 6 0}.
10: end if
11: 2:+1 := 2: − 1

=+1
�: {:√
{)
:
�: {:

,

�:+1 := =2

=2−1

(
�: − 2

=+1
�: {: {

)
:
�:

{)
:
�: {:

)
,

E:+1 := {G : (G − 2:+1))�−1
:+1 (G − 2:+1) 6 1},

12: end for
Output: G# = arg min

G∈{20 ,...,2# }∩&
5 (G) .

continuous convex function, � > 0 is a number such that | 5 (G) − 5 (G ′) | ≤ � ∀G, G ′ ∈
&. After # ≥ 2=2 ln

(
'
d

)
iterations of Algorithm 7, it holds the following inequality

in the output point G# ∈ &,

5 (G# ) − 5 (G∗) ≤
�'

d
exp

(
− #

2=2

)
+ X,

where G∗ is one of the exact solution of the problem B.11. Additionally, if the function
5 is `-strongly convex, then we have

‖G# − G∗‖22 ≤
2
`

(
�'

d
exp

(
− #

2=2

)
+ X

)
.

B.3.3 Bregman divergence basics

Let 3 : & → R be a distance generating function (also called prox-function),which
is continuously differentiable and 1–strongly convex with respect to the norm ‖ · ‖,
i.e.

3 (H) ≥ 3 (G) + 〈∇3 (G), H − G〉 + 1
2
‖H − G‖2 ∀ G, H ∈ &.

For all G, H ∈ & ⊂ E, we consider the corresponding Bregman divergence,

+ (H, G) = 3 (H) − 3 (G) − 〈∇3 (G), H − G〉.
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Depending on the formulation of a specific problem, different approaches are
possible to determine the prox-function (proximal setup) of the problem and the cor-
responding Bregman divergence: standard proximal setup (i.e. Euclidean), entropy,
ℓ1/ℓ2, simplex, nuclear norm and spectahedron can be found, for example in [?].

There are well-known examples of distance generating functions, let us denote ℓ?
norm by ‖ · ‖ ? and the standard unit simplex in R= by

(= (1) =
{
G ∈ R=+ :

=∑
8=1

G8 = 1

}
.

Consider the following two cases

• Entropy prox-function. If ? = 1, then for any G = (G1, . . . , G=) and H =

(H1, . . . , H=) ∈ & ⊆ (= (1)

3 (G) =
=∑
:=1

G: ln G: and + (H, G) =
=∑
:=1

H: ln
(
H:

G:

)
. (B.15)

• Standard Euclidean prox-function. If ? = 2, then for any G, H ∈ &

3 (G) = 1
2
‖G‖22 and + (H, G) = 1

2
‖H − G‖22. (B.16)

B.3.4 First-order optimization methods

The first-order methods, which nowadays have the most attention in the optimization
community, go back to 1847with thework of Cauchy on the steepest descent method.
With the increase in the number of applications that can be modeled as large-scale
or even huge-scale optimization problems, first-order methods, which require low
iteration cost as well as low memory storage, have received much interest over the
past few decades in order to solve smooth and non-smooth convex optimization
problems.

Historically, the gradient descent and subgradient methods were the first numeri-
cal schemes proposed to solve optimization problems with smooth and non-smooth
convex objective functions, respectively. In order to solve the problem (B.11), with
& = E and 5 is smooth, the gradient descent method generates a sequence of
iterations of the form

G:+1 = G: − W:∇ 5 (G: ), : = 0, 1, 2, ... (B.17)

where W: ∈ (0, 1] is a certain step-size at the :-th iteration.
In order to solve the problem (B.11), with & = E and 5 is non-smooth, subgra-

dient methods generate the same sequence as (B.17), but instead ∇ 5 (G: ) we take a
subgradent 6(G: ) ∈ m 5 (G: ).
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For the constrained case of the problem (B.11), i.e. when & ≠ E, subgradient
projection iterations are given by

G:+1 = Proj&
(
G: − W:6(G: )

)
:= arg min

G∈&

G − (
G: − W:6(G: )

)
2
, : = 0, 1, 2, ...

(B.18)
The subgradient methods are strongly linked to the Euclidean structure of the

space E. More precisely, the construction of methods depend on the Euclidean
projection (see (B.18)). The formulation (B.17) can be written in another form,
which is called proximal formulation, as follows

G:+1 = arg min
G∈R=

{
5 (G: ) +

〈
∇ 5 (G: ), G − G:

〉
+ 1

2W:

G − G:2
2

}
, : = 0, 1, 2, ...

(B.19)
A substantial generalization of (B.19) which allows for adjusting the method to

the possibly non-Euclidean geometry of the problem is a Mirror Descent method.
It extends the standard projected subgradient methods by replacing the Euclidean
proximal term in (B.19) with a Bregman divergence

G:+1 = arg min
G∈R=

{
5 (G: ) +

〈
∇ 5 (G: ), G − G:

〉
+ 1
W:
+ (G: , G)

}
, : = 0, 1, 2, ...

(B.20)

B.3.5 The composite optimization problem

Let & ⊆ E be a closed convex set, and 5 : & −→ R be a convex !-smooth function.
Let we consider the following optimization problem:

min
G∈&

� (G) := 5 (G) + ℎ(G), (B.21)

where ℎ : & −→ R is an arbitrary simple closed convex (in general, non-smooth)
function, which is called a composite. The problem (B.21) is called a composite
optimization problem or problem with a structure.

Such problems often arise inmany applications. One of themost famous examples
is the so-called LASSO (Least Absolute Shrinkage and Selection Operator) problem,
motivated by statistical problems.

Also, as a specific example, we can consider the problem of restoring the corre-
spondence matrix by measuring flows on links (edges) in a large computer network
(Minimal Mutual Information Model), which reduces to a composite optimization
problem of the form

min
G∈(= (1)

� (G) = 1
2
‖�G − 1‖22 + `

=∑
:=1

G: ln G: ,
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where (= (1) is the unit simplex in =-dimensional space.
In order to solve (B.21), we can use the Similar Triangles Method (STM) [89]. By

this method, as a result, it will be a sequence of points {G: }:≥1, for which we have
the following convergence rate

�

(
G:

)
− � (G∗) ≤ 4!3 (G∗)

: (: + 1) −
2!

: (: + 1)
{: − G∗2 ; ∀: ≥ 1. (B.22)

where G∗ is an optimal solution to problem (B.21), 3 (·) is a prox function on &, and
{{: }:≥1 is a sequence generated by STM, by solving an auxiliary (easily solvable)
minimization problem.

B.4 Lower complexity bounds for the variational inequalities and
saddle point problems

For the following saddle point problem

min
G

max
H
� (G, H), (B.23)

let we focus in the following classes of problems [?].

1. The first class denoted by F (!GG , !HH , !GH , `G , `H), with `G > 0 and `H > 0.
In this class, the function � (·, H) is `G-strongly convex for any fixed H and
� (G, ·) is `H-strongly concave for any fixed G.The function � is smooth and ∇�
is Lipschitz for any G1, G2, H1, H2, i.e.

‖∇G� (G1, H) − ∇G� (G2, H)‖ ≤ !GG ‖G1 − G2‖ ,∇H� (G, H1) − ∇H� (G, H2)
 ≤ !HH ‖H1 − H2‖ ,

‖∇G� (G, H1) − ∇G� (G, H2)‖ ≤ !GH ‖H1 − H2‖ ,∇H� (G1, H) − ∇H� (G2, H)
 ≤ !GH ‖G1 − G2‖ .

(B.24)

For this class of problems, we have the following lower complexity bound

Ω
©«
√
!GG

`G
+
!2
GH

`G`H
+
!HH

`H
ln

(
1
Y

)ª®¬ . (B.25)

2. The second class is a special class of the first. It is a bilinear class of problem
denoted by B(!GH , `G , `H), with `G > 0 and `H > 0. The problems in this class
written as

min
G

max
H
� (G, H) := 5 (G) + G>�H − 6(H), (B.26)

where 5 (G) is `G-strongly convex and 6(H) is `H-strongly concave, and the
matrix � satisfies ‖�‖2 ≤ !GH . For this class, we assume that the following
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prox-operators are available, for some U > 0, V > 0:

prox 5 ({) := argmin
G

{
5 (G) + 1

2U
‖G − {‖2

}
,

prox6 (D) := argmin
H

{
6(H) + 1

2V
‖H − D‖2

}
.

For this class of problems, we have the following lower complexity bound

Ω
©«
√

!2
GH

`G`H
ln

(
1
Y

)ª®¬ . (B.27)

An optimal algorithm for previously mentioned classes of problems was recently
proposed in [66].

As a result from the previous lower bounds, for the general convex-concave saddle
point problems (i.e. with `G = `H = 0), we have the following classes.

1. For the class F (!GG , !HH , !GH , 0, 0), we have the following lower bound

Ω
©«
√
!GG'

2
G

Y
+
!GH'G'H

Y
+

√
!HH'

2
H

Y

ª®¬ . (B.28)

Optimal algorithms, for this class of problems, were proposed in [?, ?, ?].
2. For the class B(!GH , 0, 0), we have the following lower bound

Ω

(
!GH'G'H

Y

)
, (B.29)

where in (B.28) and (B.29), we have ‖G∗‖ ≤ 'G , ‖H∗‖ ≤ 'H and (G∗, H∗) =
argminG argmaxH � (G, H).
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Appendix E
Regularization and restarts in convex (stochastic)
optimization and saddle point problems

The optimal results presented in Table B.1 are remarkable in that the estimate in one
cell can be easily achieved from estimate in another cell by the same method with a
slight modification, depending on this pair of cells. Let’s demonstrate, for example,
that optimal complexity for convex case (in both continuous and smooth cases) can
be obtained from known optimal complexities for `-strongly convex case. The trick
is to consider regularized problem

min
G∈&

5` (G) := 5 (G) + `
2
‖G − G0‖2 (E.1)

with ` = Y2/' and Y is desired accuracy. Now, one can use optimal algorithm for
strongly convex optimization to solve this problem, and the result of its operation
will be desired solution for original problem minG∈& 5 (G). Indeed, if it holds that

5` (G) −min
G∈&

5` (G) ≤
Y

2
(E.2)

for some point G ∈ &, then

5 (G) − 5 (G∗) = ( 5 (G) − 5` (G)) + ( 5` (G) −min
G∈&

5` (G)) + (min
G∈&

5` (G) − 5 (G∗))

≤ 0 + Y
2
+ Y

2'2 ‖G
0 − G∗‖2 ≤ Y. (E.3)

Note also, that convergence rates in Table B.1 for convex case are equal to con-
vergence rates for strongly convex case if we substitute ` = Y/'2 to them, so the
convergence rate of algorithm we used above in terms of function discrepancy for
initial non-strongly convex problem corresponds to presented estimates. Thus, opti-
mal convergence rate on the class of non-strongly convex functions cannot be worse
than that presented in Table B.1 and obtained by our reduction.

Let us now describe the inverse reduction, that is how optimal convergence rate
for `-strongly convex case can be obtained from optimal convergence rate for not-
strongly convex case and achieved after slight modification by the same optimal
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not-strongly convex optimization algorithm. It can be done with a help of restarts
technique. For example, in the case of Lipschitz continuous ∇ 5 and convex 5 ,
function discrepancy after : iterations of optimal algorithm, in accordance with
Table B.1, is

5 (G: ) − 5 (G∗) ≤ �!‖G
0 − G∗‖2
:2 , (E.4)

for some � > 0. On the other hand, due to `-strong convexity, we have

`

2
‖G: − G∗‖2 ≤ 5 (G: ) − 5 (G∗). (E.5)

Let’s choose : = 2
√
�!/`. Then, it holds that

‖G: − G∗‖2 ≤ 1
2
‖G0 − G∗‖2. (E.6)

In other words, optimal convex optimization algorithm can half argument discrep-
ancy in : iterations. After that, we restart the algorithm by setting G0 = G: to half
it again, and so on. To achieve the desired accuracy Y, it is sufficient to achieve
2Y/` argument discrepancy, so we need to perform # = log2

`'2

2Y + 1 restarts. Each
of them takes 2

√
�!/` iterations, that finally leads to convergence rate presented

in Table B.1. We can similarly reduce convergence rate for Lipschitz continuous 5
case, but reasoning would be a little more cumbersome. Thus, optimal convergence
rate on the class of strongly convex functions cannot be worse than that presented in
Table B.1 and obtained by the described reduction. Together with previous paragraph
this demonstrates that optimal convergence rates in, for example, strongly convex
case completely determine optimal convergence rates in non-strongly convex case
and vice versa.

Note that the same reasoning works for stochastic optimization problems as
well. Indeed, if there is a method having optimal convergence on average, one can
replace the corresponding discrepancies in the text above with E

[
5 (G: ) − 5 (G∗)

]
and E

[
‖G: − G∗‖2

]
, and obtain the same procedures and guarantees. Things are

different if we analyse probabilities of large deviations. In a case of regularization,
we need to change current reasoning only by adding a clause “with probability
1 − V”, because relation between original and regularized problem is deterministic.
But to demonstrate that restarts work too, we need in more delicate argument. Let
us demand that resulting probability of big deviations is lower than V. Assume that
(E.4) holds with probability 1−V/# for each restart, or, in other words, does not hold
with probability V/# . A probability of that on at least one of # restarts it does not
hold (union of events that it does not hold on 8-th restart, 8 = 1, ..., #) can be upper
bounded by V/# + ... + V/# (# times). So, a probability of that desired accuracy is
reached is greater than 1 − # · V/# = 1 − V, as was to be shown.

The constructions of regularization and restarts take important place in optimiza-
tion theory, because some of the optimal convergence rates can be reached only with
a help of reductions described above at the moment. Below, we present two such
examples.
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Nesterov’s accelerated method and log `

Y
in a strongly-convex case

Let us consider strongly-convex optimization problem minG∈& 5 (G). It is known
that Nesterov’s accelerated method with iteration as follows

G:+1 = H: − 1
!
∇ 5 (H: ) (E.7)

H:+1 = G:+1 + :

: + 3
(G:+1 − G: ) (E.8)

has optimal convergence rate $
(√

!'2

Y

)
on the class of non-strongly convex func-

tions. One can apply restarts to this method to obtain optimal method of strongly-
convex optimization with convergence rate $

(√
!
`

log `'2

Y

)
. On the other hand,

construction proposed by Nesterov allows to obtain method with following iteration

G:+1 = H: − 1
!
∇ 5 (H: ) (E.9)

H:+1 = G:+1 +
√
! − √`
√
! + √`

(G:+1 − G: ) (E.10)

such that it holds that

5 (G: ) − 5 (G∗) ≤ !'2
(
1 −

√
`

!

) :
, (E.11)

which means that its convergence rate is $
(√

!
`

log !'2

Y

)
. This convergence rate is

not optimal because of presence of ! under logarithm. Nevertheless, this method
is usually referred as optimal because logarithmic factor grows slow enough to be
ignored in practice (notation of $̃ (·) asymptotic ignoring logarithms also became
widespread in literature; presented method, thereby, has $̃

(√
!
`

)
convergence rate).

It is a common problem that ! appears under logarithm, so numerous optimal results
we know with only ` under logarithm can be achieved only by restarted methods.

Mirror-Prox in a strongly-convex strongly-concave case
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